Show simple item record

dc.contributor.advisorTinguely, Jean-Claude
dc.contributor.advisorAgarwal, Krishna
dc.contributor.advisorAhluwalia, Balpreet Singh
dc.contributor.authorHansen, Daniel Henry
dc.date.accessioned2021-05-19T05:50:47Z
dc.date.available2021-05-19T05:50:47Z
dc.date.issued2019-05-15en
dc.description.abstractAn integrated photonic chip based nanoscopy system has previously been developed at UiT, which allows for several advantages over conventional total internal reflection fluorescence microscopy and nanoscopy (i.e. super-resolutionnanoscopy). While the proof-of-concept has been demonstrated, there were several important system optimization tasks that were needed for making the system practical and more usable. This thesis tackles three major system optimization tasks, namely efficient and automatic coupling of light into waveguide in the photonic chip, precise control and stablization of feed point into the waveguide, and synchronization of illumination and collection arms of the photonic chip based microscope. For a novel and more flexible light feed setup designed at the department, a new mechanism for measuring the coupling efficiency was designed, an initial coupling and parasitic interaxis cross-talk compensation mechanism was designed, and two optimiztion algorithms were explored for the final fine coupling. Testing of the implementation showed promising results with close to optimal coupling efficiency achieved in a reasonable amount of time. A piezoelectric stage with large travel range was tuned to provide the best possible performance for controlling illumination. This was used to adapt a nanoscopy algorithm named multiple signal classification algorithm (MUSICAL) for exploiting the variable illumination property of multimode waveguides on the photonic chip. Lastly, imaging and illumination control was inplemented in software allowing the capture of datasets suitable for use with MUSICAL. Thus, the goals of this thesis were achieved successfully and the practical use ofthe photonic-chip for microscopy and nanoscopy was greatly enhanced.en_US
dc.identifier.urihttps://hdl.handle.net/10037/21206
dc.language.isoengen_US
dc.publisherUiT Norges arktiske universitetno
dc.publisherUiT The Arctic University of Norwayen
dc.rights.holderCopyright 2019 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)en_US
dc.subject.courseIDFYS-3900
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Fysikk: 430::Elektromagnetisme, akustikk, optikk: 434en_US
dc.subjectVDP::Mathematics and natural science: 400::Physics: 430::Electromagnetism, acoustics, optics: 434en_US
dc.titleChip Based Optical Nanoscopy: System Integration and Automationen_US
dc.typeMastergradsoppgavenor
dc.typeMaster thesiseng


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)