dc.contributor.advisor | Tinguely, Jean-Claude | |
dc.contributor.advisor | Agarwal, Krishna | |
dc.contributor.advisor | Ahluwalia, Balpreet Singh | |
dc.contributor.author | Hansen, Daniel Henry | |
dc.date.accessioned | 2021-05-19T05:50:47Z | |
dc.date.available | 2021-05-19T05:50:47Z | |
dc.date.issued | 2019-05-15 | en |
dc.description.abstract | An integrated photonic chip based nanoscopy system has previously been developed at UiT, which allows for several advantages over conventional total internal reflection fluorescence microscopy and nanoscopy (i.e. super-resolutionnanoscopy). While the proof-of-concept has been demonstrated, there were several important system optimization tasks that were needed for making the system practical and more usable. This thesis tackles three major system optimization tasks, namely efficient and automatic coupling of light into waveguide in the photonic chip, precise control and stablization of feed point into the waveguide, and synchronization of illumination and collection arms of the photonic chip based microscope. For a novel and more flexible light feed setup designed at the department, a new mechanism for measuring the coupling efficiency was designed, an initial coupling and parasitic interaxis cross-talk compensation mechanism was designed, and two optimiztion algorithms were explored for the final fine coupling. Testing of the implementation showed promising results with close to optimal coupling efficiency achieved in a reasonable amount of time. A piezoelectric stage with large travel range was tuned to provide the best possible performance for controlling illumination. This was used to adapt a nanoscopy algorithm named multiple signal classification algorithm (MUSICAL) for exploiting the variable illumination property of multimode waveguides on the photonic chip. Lastly, imaging and illumination control was inplemented in software allowing the capture of datasets suitable for use with MUSICAL. Thus, the goals of this thesis were achieved successfully and the practical use ofthe photonic-chip for microscopy and nanoscopy was greatly enhanced. | en_US |
dc.identifier.uri | https://hdl.handle.net/10037/21206 | |
dc.language.iso | eng | en_US |
dc.publisher | UiT Norges arktiske universitet | no |
dc.publisher | UiT The Arctic University of Norway | en |
dc.rights.holder | Copyright 2019 The Author(s) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0 | en_US |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | en_US |
dc.subject.courseID | FYS-3900 | |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Fysikk: 430::Elektromagnetisme, akustikk, optikk: 434 | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Physics: 430::Electromagnetism, acoustics, optics: 434 | en_US |
dc.title | Chip Based Optical Nanoscopy: System Integration and Automation | en_US |
dc.type | Mastergradsoppgave | nor |
dc.type | Master thesis | eng |