Show simple item record

dc.contributor.authorHerzke, Dorte
dc.contributor.authorGhaffari, Peygham
dc.contributor.authorSundet, Jan Henry
dc.contributor.authorTranang, Caroline Aas
dc.contributor.authorHalsband, Claudia
dc.date.accessioned2021-06-15T11:15:21Z
dc.date.available2021-06-15T11:15:21Z
dc.date.issued2021-06-07
dc.description.abstractMicrofibers (MF) are one of the major classes of microplastic found in the marine environment on a global scale. Very little is known about how they move and distribute from point sources such as wastewater effluents into the ocean. We chose Adventfjorden near the settlement of Longyearbyen on the Arctic Svalbard archipelago as a case study to investigate how microfibers emitted with untreated wastewater will distribute in the fjord, both on a spatial and temporal scale. Fiber abundance in the effluent was estimated from wastewater samples taken during two one-week periods in June and September 2017. Large emissions of MFs were detected, similar in scale to a modern WWTP serving 1.3 million people and providing evidence of the importance of untreated wastewater from small settlements as major local sources for MF emissions in the Arctic. Fiber movement and distribution in the fjord mapped using an online-coupled hydrodynamic-drift model (FVCOM-FABM). For parameterizing a wider spectrum of fibers from synthetic to wool, four different density classes of MFs, i.e., buoyant, neutral, sinking, and fast sinking fibers are introduced to the modeling framework. The results clearly show that fiber class has a large impact on the fiber distributions. Light fibers remained in the surface layers and left the fjord quickly with outgoing currents, while heavy fibers mostly sank to the bottom and deposited in the inner parts of the fjord and along the northern shore. A number of accumulation sites were identified within the fjord. The southern shore, in contrast, was much less affected, with low fiber concentrations throughout the modeling period. Fiber distributions were then compared with published pelagic and benthic fauna distributions in different seasons at selected stations around the fjord. The ratios of fibers to organisms showed a very wide range, indicating hot spots of encounter risk for pelagic and benthic biota. This approach, in combination with in-situ ground-truthing, can be instrumental in understanding microplastic pathways and fate in fjord systems and coastal areas and help authorities develop monitoring and mitigation strategies for microfiber and microplastic pollution in their local waters.en_US
dc.identifier.citationHerzke, Ghaffari, Sundet, Tranang, Halsband. Microplastic Fiber Emissions From Wastewater Effluents: Abundance, Transport Behavior and Exposure Risk for Biota in an Arctic Fjord. Frontiers in Environmental Science. 2021;9en_US
dc.identifier.cristinIDFRIDAID 1915591
dc.identifier.doi10.3389/fenvs.2021.662168
dc.identifier.issn2296-665X
dc.identifier.urihttps://hdl.handle.net/10037/21404
dc.language.isoengen_US
dc.publisherFrontiers Mediaen_US
dc.relation.journalFrontiers in Environmental Science
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/UTENRIKS/ 288079/Norway/Mapping marine litter in the Norwegian and Russian Arctic Seas//en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/INTPART/275172/Norway/Plastic pollution; a global Challenge Towards harmonised understanding, education and methodology in Europe, USA and China/PlastPoll/en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)en_US
dc.subjectVDP::Mathematics and natural science: 400::Zoology and botany: 480en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480en_US
dc.titleMicroplastic Fiber Emissions From Wastewater Effluents: Abundance, Transport Behavior and Exposure Risk for Biota in an Arctic Fjorden_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record