Vis enkel innførsel

dc.contributor.authorFrainer, André
dc.contributor.authorMcKie, Brendan G.
dc.date.accessioned2021-08-10T10:46:44Z
dc.date.available2021-08-10T10:46:44Z
dc.date.issued2021-05-03
dc.description.abstract<ol> <li>Forest clearance is a pervasive disturbance worldwide, but many of its impacts are regarded as transient, diminishing in intensity as forest recovers. However, forests can take decades to centuries to recover after severe disturbances, and temporal lags in recovery of ecosystem properties for different forest habitats are mostly unknown. This includes forest streams, where most studies of the impacts of forest clearance are restricted to the first years of recovery, typically finding that temporary increases in light and nutrient run-off diminish as forest recovers. Implications of longer term changes remain little investigated.</li> <li>In a space-for-time substitution experiment, we assessed changes in organic matter processing and in the functional and taxonomic composition of litter-consuming detritivores along a riparian forest age gradient ranging from 1 to 120 years since last timber harvesting.</li> <li>Variation in organic matter processing and detritivore functional diversity along the forest succession gradient were both expressed as second-order polynomial relationships (peaking at ~50 years along the forest age gradient). Decomposition rates were lowest in both the more recently clear-cut and older riparian forest streams.</li> <li>Variation of litter decomposition rates among litter bags within streams, measured by the coefficient of variation, was lowest in recent clear-cuts and increased linearly along the succession gradient. This result indicates higher within-stream heterogeneity in decomposition rates in older forest streams.</li> <li><i>Synthesis and applications</i>. We found that the decomposition of leaf litter, a component of carbon cycling in forests, was higher in streams flowing through intermediately aged forest, and that several key attributes of the organisms regulating litter decomposition also varied systematically with forest age. These findings highlight the longer term consequences of forest succession following forest clear-cutting for stream habitats. Our findings further illustrate complications arising from the use of forested sites as references for newly cleared sites without properly accounting for forest age, given conclusions regarding biotic responses will depend on the age of the reference forests. Finally, our results emphasise the potential of intensive forest management centred on vast, one-time clear-cutting events to drive long-term homogenisation not only in forest age structure but also in the functioning of associated forest stream habitats.</li> </ol>en_US
dc.identifier.citationFrainer, McKie. The legacy of forest disturbance on stream ecosystem functioning. Journal of Applied Ecology. 2021:1-12en_US
dc.identifier.cristinIDFRIDAID 1914948
dc.identifier.doi10.1111/1365-2664.13901
dc.identifier.issn0021-8901
dc.identifier.issn1365-2664
dc.identifier.urihttps://hdl.handle.net/10037/21972
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.journalJournal of Applied Ecology
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)en_US
dc.subjectVDP::Mathematics and natural science: 400::Zoology and botany: 480en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480en_US
dc.titleThe legacy of forest disturbance on stream ecosystem functioningen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel