Vis enkel innførsel

dc.contributor.advisorHa, Hoai Phuong
dc.contributor.authorHaugen, Eirik
dc.date.accessioned2021-08-31T08:46:54Z
dc.date.available2021-08-31T08:46:54Z
dc.date.issued2021-05-15
dc.description.abstractThis thesis discusses the application of optimizations to machine learning algorithms. In particular, we look at implementing these algorithms on specialized hardware, I.e. a Graphcore Intelligence Processing Unit, while also applying software optimizations that have been shown to improve performance of traditional workloads on general purpose CPUs. We discuss the feasibility of using these techniques when performing Matrix Factorization using Stochastic Gradient Descent on an IPU. We implement a program doing this, and show the results of changing different parameters during the running of SGD. We demonstrate that while machine learning is inherently approximate this does not mean that all approximate computation techniques are applicable, and that indeed some of these techniques require a more measurable level of approximation that is given by there being a correct answer, I.e. that the algorithm being approximated is not inherently approximate from the start. We also show that other techniques can be applied to reduce the time it takes for SGD to converge.en_US
dc.identifier.urihttps://hdl.handle.net/10037/22313
dc.language.isoengen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)en_US
dc.subject.courseIDINF-3990
dc.subjectVDP::Technology: 500::Information and communication technology: 550::Computer technology: 551en_US
dc.subjectVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Datateknologi: 551en_US
dc.titleInvestigating the effects of dynamic approximation methods on machine learning (ML) algorithms running on ML-specialized platformsen_US
dc.typeMaster thesisen_US
dc.typeMastergradsoppgaveen_US


Tilhørende fil(er)

Thumbnail
Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)