Show simple item record

dc.contributor.authorDey, Somdip
dc.contributor.authorSingh, Amit Kumar
dc.contributor.authorPrasad, Dilip K.
dc.contributor.authorMcDonald-Maier, Klaus Dieter
dc.date.accessioned2021-11-04T10:09:23Z
dc.date.available2021-11-04T10:09:23Z
dc.date.issued2020-07-20
dc.description.abstractThis paper proposes a novel human-inspired methodology called IRON-MAN (Integrated RatiONal prediction and Motionless ANalysis) for mobile multi-processor systems-on-chips (MPSoCs). The methodology integrates analysis of the previous image frames of the video to represent the analysis of the current frame in order to perform Temporal Motionless Analysis of the Video (TMAV). This is the first work on TMAV using Convolutional Neural Network (CNN) for scene prediction in MPSoCs. Experimental results show that our methodology outperforms state-of-the-art. We also introduce a metric named, Energy Consumption per Training Image (ECTI) to assess the suitability of using a CNN model in mobile MPSoCs with a focus on energy consumption and lifespan reliability of the device.en_US
dc.identifier.citationDey, Singh, Prasad, McDonald-Maier. IRON-MAN: An Approach to Perform Temporal Motionless Analysis of Video Using CNN in MPSoC. IEEE Access. 2020;8:137101-137115en_US
dc.identifier.cristinIDFRIDAID 1883342
dc.identifier.doi10.1109/ACCESS.2020.3010185
dc.identifier.issn2169-3536
dc.identifier.urihttps://hdl.handle.net/10037/22928
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.journalIEEE Access
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2020 The Author(s)en_US
dc.subjectVDP::Technology: 500en_US
dc.subjectVDP::Teknologi: 500en_US
dc.titleIRON-MAN: An Approach to Perform Temporal Motionless Analysis of Video Using CNN in MPSoCen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record