Vis enkel innførsel

dc.contributor.authorAslaksen, Per M.
dc.date.accessioned2021-11-25T09:23:39Z
dc.date.available2021-11-25T09:23:39Z
dc.date.issued2021-09-28
dc.description.abstractComputations of placebo effects are essential in randomized controlled trials (RCTs) for separating the specific effects of treatments from unspecific effects associated with the therapeutic intervention. Thus, the identification of placebo responders is important for testing the efficacy of treatments and drugs. The present study uses data from an experimental study on placebo analgesia to suggest a statistical procedure to separate placebo responders from nonresponders and suggests cutoff values for when responses to placebo treatment are large enough to be separated from reported symptom changes in a no-treatment condition. Unsupervised cluster analysis was used to classify responders and nonresponders, and logistic regression implemented in machine learning was used to obtain cutoff values for placebo analgesic responses. The results showed that placebo responders can be statistically separated from nonresponders by cluster analysis and machine learning classification, and this procedure is potentially useful in other fields for the identification of responders to a treatment.en_US
dc.identifier.citationAslaksen. Cutoff criteria for the placebo response: a cluster and machine learning analysis of placebo analgesia. . Scientific Reports. 2021;11(1)en_US
dc.identifier.cristinIDFRIDAID 1939666
dc.identifier.doi10.1038/s41598-021-98874-0
dc.identifier.issn2045-2322
dc.identifier.urihttps://hdl.handle.net/10037/23163
dc.language.isoengen_US
dc.publisherNature Researchen_US
dc.relation.journalScientific Reports
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)en_US
dc.subjectVDP::Social science: 200::Psychology: 260en_US
dc.subjectVDP::Samfunnsvitenskap: 200::Psykologi: 260en_US
dc.titleCutoff criteria for the placebo response: a cluster and machine learning analysis of placebo analgesia.en_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel