dc.contributor.author | Jha, Debesh | |
dc.contributor.author | Ali, Sharib | |
dc.contributor.author | Tomar, Nikhil Kumar | |
dc.contributor.author | Johansen, Håvard D. | |
dc.contributor.author | Johansen, Dag | |
dc.contributor.author | Rittscher, Jens | |
dc.contributor.author | Riegler, Michael A. | |
dc.contributor.author | Halvorsen, Pal | |
dc.date.accessioned | 2021-12-01T13:42:31Z | |
dc.date.available | 2021-12-01T13:42:31Z | |
dc.date.issued | 2021-03-04 | |
dc.description.abstract | Computer-aided detection, localization, and segmentation methods can help improve colonoscopy procedures. Even though many methods have been built to tackle automatic detection and segmentation of polyps, benchmarking of state-of-the-art methods still remains an open problem. This is due to the increasing number of researched computer vision methods that can be applied to polyp datasets. Benchmarking of novel methods can provide a direction to the development of automated polyp detection and segmentation tasks. Furthermore, it ensures that the produced results in the community are reproducible and provide a fair comparison of developed methods. In this paper, we benchmark several recent state-of-the-art methods using Kvasir-SEG, an open-access dataset of colonoscopy images for polyp detection, localization, and segmentation evaluating both method accuracy and speed. Whilst, most methods in literature have competitive performance over accuracy, we show that the proposed ColonSegNet achieved a better trade-off between an average precision of 0.8000 and mean IoU of 0.8100, and the fastest speed of 180 frames per second for the detection and localization task. Likewise, the proposed ColonSegNet achieved a competitive dice coefficient of 0.8206 and the best average speed of 182.38 frames per second for the segmentation task. Our comprehensive comparison with various state-of-the-art methods reveals the importance of benchmarking the deep learning methods for automated real-time polyp identification and delineations that can potentially transform current clinical practices and minimise miss-detection rates. | en_US |
dc.identifier.citation | Jha, Ali, Tomar, Johansen, Johansen, Rittscher, Riegler, Halvorsen. Real-Time Polyp Detection, Localization and Segmentation in Colonoscopy Using Deep Learning. IEEE Access. 2021;9:40496-40510 | en_US |
dc.identifier.cristinID | FRIDAID 1926883 | |
dc.identifier.doi | 10.1109/ACCESS.2021.3063716 | |
dc.identifier.issn | 2169-3536 | |
dc.identifier.uri | https://hdl.handle.net/10037/23242 | |
dc.language.iso | eng | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | Jha, D. (2022). Machine Learning-based Classification, Detection, and Segmentation of Medical Images. (Doctoral thesis). <a href=https://hdl.handle.net/10037/23693>https://hdl.handle.net/10037/23693</a>. | |
dc.relation.journal | IEEE Access | |
dc.relation.projectID | info:eu-repo/grantAgreement/RCN/IKEPLUSS-IKT/263248/Norway/Protecting Shared Data with Privacy Automatons// | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/RCN/FORINFRA/270053/Norway/Experimental Infrastructure for Exploration of Exascale Computing// | en_US |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2021 The Author(s) | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Information and communication science: 420 | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Informasjons- og kommunikasjonsvitenskap: 420 | en_US |
dc.title | Real-Time Polyp Detection, Localization and Segmentation in Colonoscopy Using Deep Learning | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |