dc.contributor.author | Baramidze, David | |
dc.contributor.author | Persson, Lars-Erik | |
dc.contributor.author | Singh, Harpal | |
dc.contributor.author | Tephnadze, George | |
dc.date.accessioned | 2022-09-02T10:54:17Z | |
dc.date.available | 2022-09-02T10:54:17Z | |
dc.date.issued | 2022-03-07 | |
dc.description.abstract | We prove that there exists a martingale f ∈ H<sub>p</sub> such that the subsequence {L<sub>2n</sub f} of
Nörlund logarithmic means with respect to the Walsh system are not bounded from
the martingale Hardy spaces H<sub>p</sub> to the space weak – L<sub>p</sub> for 0 < p < 1. We also prove
that for any f ∈ L<sub>p</sub>, p ≥ 1, L<sub>2n</sub> f converge to f at any Lebesgue point x. Moreover, some
new related inequalities are derived. | en_US |
dc.identifier.citation | Baramidze, Persson, Singh, Tephnadze. Some new results and inequalities for subsequences of Nörlund logarithmic means of Walsh–Fourier series. Journal of Inequalities and Applications. 30(2022) | en_US |
dc.identifier.cristinID | FRIDAID 2014924 | |
dc.identifier.doi | 10.1186/s13660-022-02765-5 | |
dc.identifier.issn | 1025-5834 | |
dc.identifier.issn | 1029-242X | |
dc.identifier.uri | https://hdl.handle.net/10037/26597 | |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation.journal | Journal of Inequalities and Applications | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2022 The Author(s) | en_US |
dc.title | Some new results and inequalities for subsequences of Nörlund logarithmic means of Walsh–Fourier series | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |