Show simple item record

dc.contributor.authorPersson, Lars-Erik
dc.contributor.authorSchipp, F.
dc.contributor.authorTephnadze, G.
dc.contributor.authorWeisz, F.
dc.date.accessioned2022-11-23T09:30:18Z
dc.date.available2022-11-23T09:30:18Z
dc.date.issued2022-05-13
dc.description.abstractIn this paper we discuss and prove an analogy of the Carleson–Hunt theorem with respect to Vilenkin systems. In particular, we use the theory of martingales and give a new and shorter proof of the almost everywhere convergence of Vilenkin–Fourier series of f ∈ L <sub>p</sub>(G<sub>m</sub>)for p > 1 in case the Vilenkin system is bounded. Moreover, we also prove sharpness by stating an analogy of the Kolmogorov theorem for p = 1 and construct a function f ∈ L<sub>1</sub>(G<sub>m</sub>) such that the partial sums with respect to Vilenkin systems diverge everywhere.en_US
dc.identifier.citationPersson, Schipp, Tephnadze, Weisz. An Analogy of the Carleson–Hunt Theorem with Respect to Vilenkin Systems. Journal of Fourier Analysis and Applications. 2022;28(3)en_US
dc.identifier.cristinIDFRIDAID 2054204
dc.identifier.doi10.1007/s00041-022-09938-2
dc.identifier.issn1069-5869
dc.identifier.issn1531-5851
dc.identifier.urihttps://hdl.handle.net/10037/27495
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.journalJournal of Fourier Analysis and Applications
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleAn Analogy of the Carleson–Hunt Theorem with Respect to Vilenkin Systemsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)