Vis enkel innførsel

dc.contributor.authorBianchi, Filippo Maria
dc.contributor.authorKampffmeyer, Michael C.
dc.contributor.authorMaiorino, Enrico
dc.contributor.authorJenssen, Robert
dc.date.accessioned2023-05-05T12:14:17Z
dc.date.available2023-05-05T12:14:17Z
dc.date.issued2017-07-03
dc.description.abstractIn this work we present a novel recurrent neural network architecture designed to model systems characterized by multiple characteristic timescales in their dynamics. The proposed network is composed by several recurrent groups of neurons that are trained to separately adapt to each timescale, in order to improve the system identification process. We test our framework on time series prediction tasks and we show some promising, preliminary results achieved on synthetic data. To evaluate the capabilities of our network, we compare the performance with several state-of-the-art recurrent architectures.en_US
dc.identifier.citationBianchi FM, Kampffmeyer MC, Maiorino, Jenssen R: Temporal overdrive recurrent neural network. In: Choe. 2017 International Joint Conference on Neural Networks (IJCNN) , 2017. IEEEen_US
dc.identifier.cristinIDFRIDAID 1536725
dc.identifier.doi10.1109/IJCNN.2017.7966397
dc.identifier.isbn978-1-5090-6182-2
dc.identifier.issn2161-4407
dc.identifier.urihttps://hdl.handle.net/10037/29127
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.projectIDNorges forskningsråd: 239844en_US
dc.rights.accessRightsopenAccessen_US
dc.titleTemporal overdrive recurrent neural networken_US
dc.type.versionsubmittedVersionen_US
dc.typeChapteren_US
dc.typeBokkapittelen_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel