Vis enkel innførsel

dc.contributor.authorKadek, Marius
dc.contributor.authorWang, Baokai
dc.contributor.authorJoosten, Marc
dc.contributor.authorChiu, Wei-Chi
dc.contributor.authorMairesse, Francois
dc.contributor.authorRepisky, Michal
dc.contributor.authorRuud, Kenneth
dc.contributor.authorBansil, Arun
dc.date.accessioned2023-08-08T12:01:45Z
dc.date.available2023-08-08T12:01:45Z
dc.date.issued2023-06-02
dc.description.abstractTwo-dimensional (2D) materials exhibit a wide range of remarkable phenomena, many of which owe their existence to the relativistic spin-orbit coupling (SOC) effects. To understand and predict properties of materials containing heavy elements, such as the transition-metal dichalcogenides (TMDs), relativistic effects must be taken into account in first-principles calculations. We present an all-electron method based on the four-component Dirac Hamiltonian and Gaussian-type orbitals (GTOs) that overcomes complications associated with linear dependencies and ill-conditioned matrices that arise when diffuse functions are included in the basis. Until now, there has been no systematic study of the convergence of GTO basis sets for periodic solids either at the nonrelativistic or the relativistic level. Here we provide such a study of relativistic band structures of the 2D TMDs in the hexagonal (2H), tetragonal (1T), and distorted tetragonal (1T') structures, along with a discussion of their SOC-driven properties (Rashba splitting and Z<subZ2</sub> topological invariants). We demonstrate the viability of our approach even when large basis sets with multiple basis functions involving various valence orbitals (denoted triple- and quadruple-ζ) are used in the relativistic regime. Our method does not require the use of pseudopotentials and provides access to all electronic states within the same framework. Our study paves the way for direct studies of material properties, such as the parameters in spin Hamiltonians, that depend heavily on the electron density near atomic nuclei where relativistic and SOC effects are the strongest.en_US
dc.identifier.citationKadek M, Wang, Joosten M, Chiu, Mairesse, Repisky M, Ruud K, Bansil A. Band structures and Z2 invariants of two-dimensional transition metal dichalcogenide monolayers from fully relativistic Dirac-Kohn-Sham theory using Gaussian-type orbitals. PHYSICAL REVIEW MATERIALS. 2023;7:064001en_US
dc.identifier.cristinIDFRIDAID 2152472
dc.identifier.doi10.1103/PhysRevMaterials.7.064001
dc.identifier.issn2475-9953
dc.identifier.urihttps://hdl.handle.net/10037/29788
dc.language.isoengen_US
dc.relation.journalPHYSICAL REVIEW MATERIALS
dc.relation.projectIDNorges forskningsråd: 262695en_US
dc.relation.projectIDEC/H2020: 945478en_US
dc.relation.projectIDNorges forskningsråd: 301864en_US
dc.relation.projectIDNorges forskningsråd: 315822en_US
dc.relation.projectIDSigma2: NN4654Ken_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holder©2023 American Physical Societyen_US
dc.titleBand structures and Z2 invariants of two-dimensional transition metal dichalcogenide monolayers from fully relativistic Dirac-Kohn-Sham theory using Gaussian-type orbitalsen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel