Show simple item record

dc.contributor.authorPunnakkal, Abhinanda Ranjit
dc.contributor.authorGodtliebsen, Gustav
dc.contributor.authorSomani, Ayush
dc.contributor.authorAcuna Maldonado, Sebastian Andres
dc.contributor.authorBirgisdottir, Åsa birna
dc.contributor.authorPrasad, Dilip K.
dc.contributor.authorHorsch, Alexander
dc.contributor.authorAgarwal, Krishna
dc.date.accessioned2023-08-15T12:04:45Z
dc.date.available2023-08-15T12:04:45Z
dc.date.issued2023-03-03
dc.description.abstractThe quantitative analysis of subcellular organelles such as mitochondria in cell fluorescence microscopy images is a demanding task because of the inherent challenges in the segmentation of these small and morphologically diverse structures. In this article, we demonstrate the use of a machine learning-aided segmentation and analysis pipeline for the quantification of mitochondrial morphology in fluorescence microscopy images of fixed cells. The deep learning-based segmentation tool is trained on simulated images and eliminates the requirement for ground truth annotations for supervised deep learning. We demonstrate the utility of this tool on fluorescence microscopy images of fixed cardiomyoblasts with a stable expression of fluorescent mitochondria markers and employ specific cell culture conditions to induce changes in the mitochondrial morphology.en_US
dc.identifier.citationPunnakkal, Godtliebsen, Somani, Acuna Maldonado, Birgisdottir, Prasad, Horsch, Agarwal. Analyzing Mitochondrial Morphology Through Simulation Supervised Learning. Journal of Visualized Experiments. 2023;2023(193)en_US
dc.identifier.cristinIDFRIDAID 2158412
dc.identifier.doi10.3791/64880
dc.identifier.issn1940-087X
dc.identifier.urihttps://hdl.handle.net/10037/29953
dc.language.isoengen_US
dc.publisherMyJove Corporationen_US
dc.relation.journalJournal of Visualized Experiments
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)en_US
dc.titleAnalyzing Mitochondrial Morphology Through Simulation Supervised Learningen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)