Show simple item record

dc.contributor.authorBhavsar, Swapnil
dc.contributor.authorOlsen, Lotte
dc.contributor.authorLøkke, Cecilie
dc.contributor.authorKoster, Jan
dc.contributor.authorFlægstad, Trond
dc.contributor.authorEinvik, Christer
dc.date.accessioned2023-08-18T08:41:22Z
dc.date.available2023-08-18T08:41:22Z
dc.date.issued2023-03-24
dc.description.abstractBackground: Studies conducted in the last decades have revealed a role for the non-coding microRNAs (miRNAs) in cancer development and progression. Several miRNAs within the chromosome region 14q32, a region commonly deleted in cancers, are associated with poor clinical outcome in the childhood cancer neuroblastoma. We have previously identified miR-323a-3p from this region to be downregulated in chemotherapy treated neuroblastoma cells compared to pre-treatment cells from the same patients. Furthermore, in neuroblastoma tumors, this miRNA is downregulated in advanced stage 4 disease compared to stage 1–2. In this study, we attempt to delineate the unknown functional roles of miR-323a-3p in neuroblastoma.<p> <p>Methods: Synthetic miRNA mimics were used to overexpress miR-323a-3p in neuroblastoma cell lines. To investigate the functional roles of miR-323a-3p, cell viability assay, flow cytometry, reverse transcription-quantitative polymerase chain reaction, luciferase reporter assay and western blot were conducted on the neuroblastoma cell lines Kelly, SH-SY5Y and SK-N-BE(2)-C.<p> <p>Results: Ectopic expression of miR-323a-3p resulted in marked reduction of cell viability in Kelly, SH-SY5Y and SK-N-BE(2)-C by causing G1-cell cycle arrest in Kelly and SH-SY5Y and apoptosis in all the cell lines tested. Furthermore, mRNA and protein levels of signal transducer and activator of transcription 3 (STAT3) were reduced upon miR-323a-3p overexpression. A direct binding of the miR-323a-3p to the 3′UTR of STAT3 was experimentally validated by luciferase reporter assay, where miR-323a-3p reduced luminescent signal from full length STAT3 3′UTR luciferase reporter, but not from a reporter with mutation in the predicted seed sequence.<p> <p>Conclusions: miR-323a-3p inhibits growth of neuroblastoma cell lines through G1-cell cycle arrest and apoptosis, and the well-known oncogene STAT3 is a direct target of this miRNA.en_US
dc.identifier.citationBhavsar SP, Olsen L, Løkke C, Koster J, Flægstad T, Einvik C. Hsa-miR-323a-3p functions as a tumor suppressor and targets STAT3 in neuroblastoma cells. Frontiers in pediatrics. 2023;11en_US
dc.identifier.cristinIDFRIDAID 2151770
dc.identifier.doi10.3389/fped.2023.1098999
dc.identifier.issn2296-2360
dc.identifier.urihttps://hdl.handle.net/10037/30064
dc.language.isoengen_US
dc.publisherFrontiers Mediaen_US
dc.relation.journalFrontiers in pediatrics
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleHsa-miR-323a-3p functions as a tumor suppressor and targets STAT3 in neuroblastoma cellsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)