Show simple item record

dc.contributor.authorMonakhov, Vladimir
dc.contributor.authorThambawita, Vajira L B
dc.contributor.authorHalvorsen, Pål
dc.contributor.authorRiegler, Michael
dc.date.accessioned2023-09-04T09:14:55Z
dc.date.available2023-09-04T09:14:55Z
dc.date.issued2023-02-13
dc.description.abstractThe interest in video anomaly detection systems that can detect different types of anomalies, such as violent behaviours in surveillance videos, has gained traction in recent years. The current approaches employ deep learning to perform anomaly detection in videos, but this approach has multiple problems. For example, deep learning in general has issues with noise, concept drift, explainability, and training data volumes. Additionally, anomaly detection in itself is a complex task and faces challenges such as unknownness, heterogeneity, and class imbalance. Anomaly detection using deep learning is therefore mainly constrained to generative models such as generative adversarial networks and autoencoders due to their unsupervised nature; however, even they suffer from general deep learning issues and are hard to properly train. In this paper, we explore the capabilities of the Hierarchical Temporal Memory (HTM) algorithm to perform anomaly detection in videos, as it has favorable properties such as noise tolerance and online learning which combats concept drift. We introduce a novel version of HTM, named GridHTM, which is a grid-based HTM architecture specifically for anomaly detection in complex videos such as surveillance footage. We have tested GridHTM using the VIRAT video surveillance dataset, and the subsequent evaluation results and online learning capabilities prove the great potential of using our system for real-time unsupervised anomaly detection in complex videos.en_US
dc.identifier.citationMonakhov, Thambawita, Halvorsen, Riegler. GridHTM: Grid-Based Hierarchical Temporal Memory for Anomaly Detection in Videos. Sensors. 2023;23:2087(4):1-15en_US
dc.identifier.cristinIDFRIDAID 2133278
dc.identifier.doi10.3390/s23042087
dc.identifier.issn1424-8220
dc.identifier.urihttps://hdl.handle.net/10037/30652
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.journalSensors
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleGridHTM: Grid-Based Hierarchical Temporal Memory for Anomaly Detection in Videosen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)