Vis enkel innførsel

dc.contributor.authorMartens, Gerrit A.
dc.contributor.authorGeßner, Cornelia
dc.contributor.authorFolkow, Lars
dc.contributor.authorCreydt, Marina
dc.contributor.authorFischer, Markus
dc.contributor.authorBurmester, Thorsten
dc.date.accessioned2023-09-14T11:41:50Z
dc.date.available2023-09-14T11:41:50Z
dc.date.issued2023-04-14
dc.description.abstractLipids make up more than half of the human brain's dry weight, yet the composition and function of the brain lipidome is not well characterized. Lipids not only provide the structural basis of cell membranes, but also take part in a wide variety of biochemical processes. In neurodegenerative diseases, lipids can facilitate neuroprotection and serve as diagnostic biomarkers. The study of organisms adapted to extreme environments may prove particularly valuable in understanding mechanisms that protect against stressful conditions and prevent neurodegeneration. The brain of the hooded seal (Cystophora cristata) exhibits a remarkable tolerance to low tissue oxygen levels (hypoxia). While neurons of most terrestrial mammals suffer irreversible damage after only short periods of hypoxia, in vitro experiments show that neurons of the hooded seal display prolonged functional integrity even in severe hypoxia. How the brain lipidome contributes to the hypoxia tolerance of marine mammals has been poorly studied. We performed an untargeted lipidomics analysis, which revealed that lipid species are significantly modulated in marine mammals compared with non-diving mammals. Increased levels of sphingomyelin species may have important implications for efficient signal transduction in the seal brain. Substrate assays also revealed elevated normoxic tissue levels of glucose and lactate, which suggests an enhanced glycolytic capacity. Additionally, concentrations of the neurotransmitters glutamate and glutamine were decreased, which may indicate reduced excitatory synaptic signaling in marine mammals. Analysis of hypoxia-exposed brain tissue suggests that these represent constitutive mechanisms rather than an induced response towards hypoxic conditions.en_US
dc.identifier.citationMartens, Geßner, Folkow, Creydt, Fischer, Burmester. The roles of brain lipids and polar metabolites in the hypoxia tolerance of deep-diving pinnipeds. Journal of Experimental Biology. 2023;226(8)en_US
dc.identifier.cristinIDFRIDAID 2158619
dc.identifier.doi10.1242/jeb.245355
dc.identifier.issn0022-0949
dc.identifier.issn1477-9145
dc.identifier.urihttps://hdl.handle.net/10037/30990
dc.language.isoengen_US
dc.publisherThe Company of Biologistsen_US
dc.relation.journalJournal of Experimental Biology
dc.rights.accessRightsopenAccessen_US
dc.rights.holder© 2023. Published by The Company of Biologists Ltden_US
dc.titleThe roles of brain lipids and polar metabolites in the hypoxia tolerance of deep-diving pinnipedsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel