Show simple item record

dc.contributor.authorKoirala, Madhu
dc.contributor.authorEllingsen, Pål Gunnar
dc.contributor.authorÅdland, Roar Os
dc.date.accessioned2023-09-15T10:32:32Z
dc.date.available2023-09-15T10:32:32Z
dc.date.issued2023
dc.description.abstractIn this paper, we present a novel concept of tracking cargoes at open ports using remote sensing images and convolution neural network (CNN) to classify various dry bulk commodities. The dataset used is prepared using Sentinel-2 atmospherically corrected (Sentinel-2 L2A) images covering 12 spectral bands. There are total 4995 labeled and geo-referenced images for four different cargoes-bauxite, coal, limestone and logs. We provide benchmarks for this dataset using a CNN. The overall classification accuracy achieved was more than 90% for all cargo types. The dataset finds its applications in detecting and identifying cargoes on open portsen_US
dc.identifier.citationKoirala M, Ellingsen PG, Ådland RO. Classification of Bulk Cargo Types Stored Openly at Ports Using CNN. IEEE conference proceedings; 2023. 4 p.en_US
dc.identifier.cristinIDFRIDAID 2202545
dc.identifier.doi10.1109/IGARSS52108.2023.10282748
dc.identifier.isbn979-8-3503-2010-7
dc.identifier.urihttps://hdl.handle.net/10037/31019
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.projectIDNorges forskningsråd: 326609en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.subjectVDP::Teknologi: 500::Marin teknologi: 580en_US
dc.subjectVDP::Technology: 500::Marine technology: 580en_US
dc.subjectSkipsfartsøkonomi / Shipping Economicsen_US
dc.titleClassification of Bulk Cargo Types Stored Openly at Ports Using CNNen_US
dc.type.versionacceptedVersionen_US
dc.typeChapteren_US
dc.typeBokkapittelen_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)