Vis enkel innførsel

dc.contributor.authorKoirala, Madhu
dc.contributor.authorEllingsen, Pål Gunnar
dc.contributor.authorÅdland, Roar Os
dc.date.accessioned2023-09-15T10:32:32Z
dc.date.available2023-09-15T10:32:32Z
dc.date.issued2023
dc.description.abstractIn this paper, we present a novel concept of tracking cargoes at open ports using remote sensing images and convolution neural network (CNN) to classify various dry bulk commodities. The dataset used is prepared using Sentinel-2 atmospherically corrected (Sentinel-2 L2A) images covering 12 spectral bands. There are total 4995 labeled and geo-referenced images for four different cargoes-bauxite, coal, limestone and logs. We provide benchmarks for this dataset using a CNN. The overall classification accuracy achieved was more than 90% for all cargo types. The dataset finds its applications in detecting and identifying cargoes on open portsen_US
dc.identifier.citationKoirala M, Ellingsen PG, Ådland RO. Classification of Bulk Cargo Types Stored Openly at Ports Using CNN. IEEE conference proceedings; 2023. 4 p.en_US
dc.identifier.cristinIDFRIDAID 2202545
dc.identifier.doi10.1109/IGARSS52108.2023.10282748
dc.identifier.isbn979-8-3503-2010-7
dc.identifier.urihttps://hdl.handle.net/10037/31019
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.projectIDNorges forskningsråd: 326609en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.subjectVDP::Teknologi: 500::Marin teknologi: 580en_US
dc.subjectVDP::Technology: 500::Marine technology: 580en_US
dc.subjectSkipsfartsøkonomi / Shipping Economicsen_US
dc.titleClassification of Bulk Cargo Types Stored Openly at Ports Using CNNen_US
dc.type.versionacceptedVersionen_US
dc.typeChapteren_US
dc.typeBokkapittelen_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)