Vis enkel innførsel

dc.contributor.authorFeng, Xiaoshuang
dc.contributor.authorWu, Wendy Yi-Ying
dc.contributor.authorOnwuka, Justina Ucheojor
dc.contributor.authorHaider, Zahra
dc.contributor.authorAlcala, Karine
dc.contributor.authorSmith-Byrne, Karl
dc.contributor.authorZahed, Hana
dc.contributor.authorGuida, Florence
dc.contributor.authorWang, Renwei
dc.contributor.authorBassett, Julie K.
dc.contributor.authorStevens, Victoria
dc.contributor.authorWang, Ying
dc.contributor.authorWeinstein, Stephanie
dc.contributor.authorFreedman, Neal D.
dc.contributor.authorChen, Chu
dc.contributor.authorTinker, Lesley
dc.contributor.authorNøst, Therese Haugdahl
dc.contributor.authorKoh, Woon-Puay
dc.contributor.authorMuller, David
dc.contributor.authorColorado-Yohar, Sandra M.
dc.contributor.authorTumino, Rosario
dc.contributor.authorHung, Rayjean J.
dc.contributor.authorAmos, Christopher I.
dc.contributor.authorLin, Xihong
dc.contributor.authorZhang, Xuehong
dc.contributor.authorArslan, Alan A.
dc.contributor.authorSánchez, Maria-Jose
dc.contributor.authorSørgjerd, Elin Pettersen
dc.contributor.authorSeveri, Gianluca
dc.contributor.authorHveem, Kristian
dc.contributor.authorBrennan, Paul
dc.contributor.authorLanghammer, Arnulf
dc.contributor.authorMilne, Roger L.
dc.contributor.authorYuan, Jian-Min
dc.contributor.authorMelin, Beatrice
dc.contributor.authorJohansson, Mikael
dc.contributor.authorRobbins, Hilary A.
dc.contributor.authorJohansson, Mattias
dc.date.accessioned2023-09-18T07:19:42Z
dc.date.available2023-09-18T07:19:42Z
dc.date.issued2023-06-01
dc.description.abstractBackground: We sought to develop a proteomics-based risk model for lung cancer and evaluate its risk-discriminatory performance in comparison with a smoking-based risk model (PLCOm2012) and a commercially available autoantibody biomarker test.<p><p>Methods: We designed a case-control study nested in 6 prospective cohorts, including 624 lung cancer participants who donated blood samples at most 3 years prior to lung cancer diagnosis and 624 smoking-matched cancer free participants who were assayed for 302 proteins. We used 470 case-control pairs from 4 cohorts to select proteins and train a protein-based risk model. We subsequently used 154 case-control pairs from 2 cohorts to compare the risk-discriminatory performance of the protein-based model with that of the Early Cancer Detection Test (EarlyCDT)-Lung and the PLCOm2012 model using receiver operating characteristics analysis and by estimating models’ sensitivity. All tests were 2-sided. <p>Results: The area under the curve for the protein-based risk model in the validation sample was 0.75 (95% confidence interval [CI] ¼ 0.70 to 0.81) compared with 0.64 (95% CI ¼ 0.57 to 0.70) for the PLCOm2012 model (Pdifference ¼ .001). The EarlyCDT-Lung had a sensitivity of 14% (95% CI ¼ 8.2% to 19%) and a specificity of 86% (95% CI ¼ 81% to 92%) for incident lung cancer. At the same specificity of 86%, the sensitivity for the protein-based risk model was estimated at 49% (95% CI ¼ 41% to 57%) and 30% (95% CI ¼ 23% to 37%) for the PLCOm2012 model. <p>Conclusion: Circulating proteins showed promise in predicting incident lung cancer and outperformed a standard risk prediction model and the commercialized EarlyCDT-Lung.en_US
dc.identifier.citationFeng, Wu, Onwuka, Haider, Alcala, Smith-Byrne, Zahed, Guida, Wang, Bassett, Stevens, Wang, Weinstein, Freedman, Chen, Tinker, Nøst, Koh, Muller, Colorado-Yohar, Tumino, Hung, Amos, Lin, Zhang, Arslan, Sánchez, Sørgjerd, Severi, Hveem, Brennan, Langhammer, Milne, Yuan, Melin, Johansson, Robbins, Johansson. Lung cancer risk discrimination of prediagnostic proteomics measurements compared with existing prediction tools. Journal of the National Cancer Institute. 2023;115(9):1050-1059en_US
dc.identifier.cristinIDFRIDAID 2175357
dc.identifier.doi10.1093/jnci/djad071
dc.identifier.issn0027-8874
dc.identifier.issn1460-2105
dc.identifier.urihttps://hdl.handle.net/10037/31041
dc.language.isoengen_US
dc.publisherOxford University Pressen_US
dc.relation.journalJournal of the National Cancer Institute
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0en_US
dc.rightsAttribution-NonCommercial 4.0 International (CC BY-NC 4.0)en_US
dc.titleLung cancer risk discrimination of prediagnostic proteomics measurements compared with existing prediction toolsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)