Vis enkel innførsel

dc.contributor.authorPiene, Ragni
dc.contributor.authorRiener, Cordian
dc.contributor.authorShapiro, Boris
dc.date.accessioned2023-11-06T11:27:44Z
dc.date.available2023-11-06T11:27:44Z
dc.date.issued2023
dc.description.abstractBelow we consider the evolutes of plane real-algebraic curves and discuss some of their complex and real-algebraic properties. In particular, for a given degree d ≥ 2, we provide lower bounds for the following four numerical invariants: 1) the maximal number of times a real line can intersect the evolute of a real-algebraic curve of degree d; 2) the maximal number of real cusps which can occur on the evolute of a real-algebraic curve of degree d; 3) the maximal number of (cru)nodes which can occur on the dual curve to the evolute of a real-algebraic curve of degree d; 4) the maximal number of (cru)nodes which can occur on the evolute of a real-algebraic curve of degree d.en_US
dc.descriptionSource at <a href=https://aif.centre-mersenne.org/>https://aif.centre-mersenne.org/</a>.en_US
dc.identifier.citationPiene R, Riener C, Shapiro. Return of the evolute. Annales de l'Institut Fourier. 2023en_US
dc.identifier.cristinIDFRIDAID 1956819
dc.identifier.issn0373-0956
dc.identifier.issn1777-5310
dc.identifier.urihttps://hdl.handle.net/10037/31675
dc.language.isoengen_US
dc.publisherAnnales de l’Institut Fourieren_US
dc.relation.journalAnnales de l'Institut Fourier
dc.relation.projectIDTromsø forskningsstiftelse: 17MATTECRen_US
dc.relation.urihttps://arxiv.org/pdf/2110.11691.pdf
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/3.0en_US
dc.rightsAttribution 3.0 International (CC BY 3.0)en_US
dc.titleReturn of the evoluteen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 3.0 International (CC BY 3.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 3.0 International (CC BY 3.0)