Vis enkel innførsel

dc.contributor.authorDechevski / Dechevsky, Lubomir Todorov
dc.contributor.authorTangrand, Kristoffer Meyer
dc.date.accessioned2024-01-24T10:04:19Z
dc.date.available2024-01-24T10:04:19Z
dc.date.issued2023
dc.description.abstractThis is the first paper in a sequence of studies including also [#!llhm2022!#] and [#!llhm2022_1!#] in which we introduce a new type of neural networks (NNs) – wavelet-based neural networks (WBNNs) – and study their properties and potential for applications. We begin this study with a comparison to the currently existing type of wavelet neural networks (WNNs) and show that WBNNs vastly outperform WNNs. One reason for the vast superiority of WBNNs is their advanced hierarchical tree structure based on biorthonormal multiresolution analysis (MRA). Another reason for this is the implementation of our new idea to incorporate the wavelet tree depth into the neural width of the NN. The separation of the roles of wavelet depth and neural depth provides a conceptually and algorithmically simple but very highly efficient methodology for sharp increase in functionality of swarm and deep WBNNs and rapid acceleration of the machine learning process.en_US
dc.identifier.citationDechevski / Dechevsky, Tangrand. Wavelet neural networks versus wavelet-based neural networks. International Journal of Applied Mathematics (IJAM). 2023;36(2):205-251en_US
dc.identifier.cristinIDFRIDAID 2156167
dc.identifier.doi10.12732/ijam.v36i2.5
dc.identifier.issn1311-1728
dc.identifier.issn1314-8060
dc.identifier.urihttps://hdl.handle.net/10037/32699
dc.language.isoengen_US
dc.publisherIJAM (International Journal of Applied Mathematics)en_US
dc.relation.journalInternational Journal of Applied Mathematics (IJAM)
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.titleWavelet neural networks versus wavelet-based naural networksen_US
dc.type.versionacceptedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel