Show simple item record

dc.contributor.authorThe, Dennis
dc.date.accessioned2024-04-02T12:42:02Z
dc.date.available2024-04-02T12:42:02Z
dc.date.issued2024-01-24
dc.description.abstractAmong (regular, normal) parabolic geometries of type (<i>G,P</i>), there is a locally unique maximally symmetric structure and it has symmetry dimension dim(<i>G</i>). The symmetry gap problem concerns the determination of the next realizable (submaximal) symmetry dimension. When <i>G</i> is a complex or split-real simple Lie group of rank at least three or when (<i>G,P</i>) = (<i>G<sub>2</sub></i>, <i>P</i><sub>2</sub>), we establish a local uniqueness result for submaximally symmetric structures of type (<i>G,P</i>).en_US
dc.identifier.citationThe. On uniqueness of submaximally symmetric parabolic geometries. International Journal of Mathematics. 2024en_US
dc.identifier.cristinIDFRIDAID 2245530
dc.identifier.doi10.1142/S0129167X24400019
dc.identifier.issn0129-167X
dc.identifier.urihttps://hdl.handle.net/10037/33306
dc.language.isoengen_US
dc.publisherWorld Scientific Publishingen_US
dc.relation.journalInternational Journal of Mathematics
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.titleOn uniqueness of submaximally symmetric parabolic geometriesen_US
dc.type.versionacceptedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record