dc.contributor.author | The, Dennis | |
dc.date.accessioned | 2024-04-02T12:42:02Z | |
dc.date.available | 2024-04-02T12:42:02Z | |
dc.date.issued | 2024-01-24 | |
dc.description.abstract | Among (regular, normal) parabolic geometries of type (<i>G,P</i>), there is a locally unique maximally symmetric structure and it has symmetry dimension dim(<i>G</i>). The symmetry gap problem concerns the determination of the next realizable (submaximal) symmetry dimension. When <i>G</i> is a complex or split-real simple Lie group of rank at least three or when (<i>G,P</i>) = (<i>G<sub>2</sub></i>, <i>P</i><sub>2</sub>), we establish a local uniqueness result for submaximally symmetric structures of type (<i>G,P</i>). | en_US |
dc.identifier.citation | The. On uniqueness of submaximally symmetric parabolic geometries. International Journal of Mathematics. 2024 | en_US |
dc.identifier.cristinID | FRIDAID 2245530 | |
dc.identifier.doi | 10.1142/S0129167X24400019 | |
dc.identifier.issn | 0129-167X | |
dc.identifier.uri | https://hdl.handle.net/10037/33306 | |
dc.language.iso | eng | en_US |
dc.publisher | World Scientific Publishing | en_US |
dc.relation.journal | International Journal of Mathematics | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2024 The Author(s) | en_US |
dc.title | On uniqueness of submaximally symmetric parabolic geometries | en_US |
dc.type.version | acceptedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |