Show simple item record

dc.contributor.authorFerguson, Andrew
dc.contributor.authorOttaviani, Giorgio
dc.contributor.authorSafey el Din, Mohab
dc.contributor.authorTeixeira Turatti, Ettore
dc.date.accessioned2024-09-30T11:01:52Z
dc.date.available2024-09-30T11:01:52Z
dc.date.issued2024-02-10
dc.description.abstractWe study the problem of how many different sum of squares decompositions a general polynomial <i>f</i> with SOS-rank <i>k</i> admits. We show that there is a link between the variety SOS<sub><i>k</sub></i>(<i>f</i>) of all SOS-decompositions of <i>f</i> and the orthogonal group O(<i>k</i>). We exploit this connection to obtain the dimension of SOS<sub><i>k</sub></i>(<i>f</i>) and show that its degree is bounded from below by the degree of O (<i>k</i>). In particular, for <i>k</i> = 2 we show that SOS<sub>2</sub>(<i>f</i>) is isomorphic to O(2) and hence the degree bound becomes an equality. Moreover, we compute the dimension of the space of polynomials of SOS-rank <i>k</i> and obtain the degree in the special case <i>k</i> = 2.en_US
dc.identifier.citationFerguson, Ottaviani, Safey el Din, Teixeira Turatti. On the degree of varieties of sum of squares. Journal of Pure and Applied Algebra. 2024;228(7)en_US
dc.identifier.cristinIDFRIDAID 2290462
dc.identifier.doi10.1016/j.jpaa.2024.107638
dc.identifier.issn0022-4049
dc.identifier.issn1873-1376
dc.identifier.urihttps://hdl.handle.net/10037/34924
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalJournal of Pure and Applied Algebra
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleOn the degree of varieties of sum of squaresen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)