Vis enkel innførsel

dc.contributor.authorMunthe-Kaas, Hans Zanna
dc.contributor.authorStava, Jonatan
dc.date.accessioned2024-11-06T11:26:42Z
dc.date.available2024-11-06T11:26:42Z
dc.date.issued2024-07-25
dc.description.abstractAssociated to a symmetric space there is a canonical connection with zero torsion and parallel curvature. This connection acts as a binary operator on the vector space of smooth sections of the tangent bundle, and it is linear with respect to the real numbers. Thus the smooth section of the tangent bundle together with the connection form an algebra we call the connection algebra. The constraints of zero torsion and constant curvature makes the connection algebra into a Lie admissible triple algebra. This is a type of algebra that generalises pre-Lie algebras, and it can be embedded into a post-Lie algebra in a canonical way that generalises the canonical embedding of Lie triple systems into Lie algebras. The free Lie admissible triple algebra can be described by incorporating triple-brackets into the leaves of rooted (non-planar) trees.en_US
dc.identifier.citationMunthe-Kaas, Stava. Lie Admissible Triple Algebras: The Connection Algebra of Symmetric Spaces. SIGMA. Symmetry, Integrability and Geometry. 2024;20en_US
dc.identifier.cristinIDFRIDAID 2306704
dc.identifier.doi10.3842/SIGMA.2024.068
dc.identifier.issn1815-0659
dc.identifier.urihttps://hdl.handle.net/10037/35468
dc.language.isoengen_US
dc.publisherSIGMAen_US
dc.relation.journalSIGMA. Symmetry, Integrability and Geometry
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0en_US
dc.rightsAttribution-ShareAlike 4.0 International (CC BY-SA 4.0)en_US
dc.titleLie Admissible Triple Algebras: The Connection Algebra of Symmetric Spacesen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)