dc.contributor.author | Piatnitski, Andrei | |
dc.contributor.author | Rybalko, Volodymyr | |
dc.date.accessioned | 2025-01-15T10:17:31Z | |
dc.date.available | 2025-01-15T10:17:31Z | |
dc.date.issued | 2024-11-11 | |
dc.description.abstract | We consider a spectral problem for convolution-type operators in environments with locally periodic microstructure and study the asymptotic behavior of the bottom of the spectrum. We show that the bottom point of the spectrum converges as the microstructure period tends to zero, and identify the limit in terms of an additive eigenvalue problem for effective Hamilton–Jacobi equation. In the periodic case, we establish a more accurate two-term asymptotic formula. | en_US |
dc.identifier.citation | Piatnitski, Rybalko. Homogenization of nonlocal spectral problems. Zeitschrift für Angewandte Mathematik und Physik. 2024;75(6) | en_US |
dc.identifier.cristinID | FRIDAID 2321048 | |
dc.identifier.doi | 10.1007/s00033-024-02365-x | |
dc.identifier.issn | 0044-2275 | |
dc.identifier.issn | 1420-9039 | |
dc.identifier.uri | https://hdl.handle.net/10037/36193 | |
dc.language.iso | eng | en_US |
dc.publisher | Springer Nature | en_US |
dc.relation.journal | Zeitschrift für Angewandte Mathematik und Physik | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2024 The Author(s) | en_US |
dc.subject | VDP::Matematikk og naturvitenskap: 400::Matematikk: 410 | en_US |
dc.subject | VDP::Mathematics and natural scienses: 400::Mathematics: 410 | en_US |
dc.title | Homogenization of nonlocal spectral problems | en_US |
dc.type.version | acceptedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |