Show simple item record

dc.contributor.authorPiatnitski, Andrei
dc.contributor.authorRybalko, Volodymyr
dc.date.accessioned2025-01-15T10:17:31Z
dc.date.available2025-01-15T10:17:31Z
dc.date.issued2024-11-11
dc.description.abstractWe consider a spectral problem for convolution-type operators in environments with locally periodic microstructure and study the asymptotic behavior of the bottom of the spectrum. We show that the bottom point of the spectrum converges as the microstructure period tends to zero, and identify the limit in terms of an additive eigenvalue problem for effective Hamilton–Jacobi equation. In the periodic case, we establish a more accurate two-term asymptotic formula.en_US
dc.identifier.citationPiatnitski, Rybalko. Homogenization of nonlocal spectral problems. Zeitschrift für Angewandte Mathematik und Physik. 2024;75(6)en_US
dc.identifier.cristinIDFRIDAID 2321048
dc.identifier.doi10.1007/s00033-024-02365-x
dc.identifier.issn0044-2275
dc.identifier.issn1420-9039
dc.identifier.urihttps://hdl.handle.net/10037/36193
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.relation.journalZeitschrift für Angewandte Mathematik und Physik
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.subjectVDP::Matematikk og naturvitenskap: 400::Matematikk: 410en_US
dc.subjectVDP::Mathematics and natural scienses: 400::Mathematics: 410en_US
dc.titleHomogenization of nonlocal spectral problemsen_US
dc.type.versionacceptedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record