Show simple item record

dc.contributor.authorWinther, Henrik
dc.date.accessioned2025-01-22T12:16:04Z
dc.date.available2025-01-22T12:16:04Z
dc.date.issued2024
dc.description.abstractWe consider a construction of the fundamental spin representations of the simple Lie algebras so(n) in terms of binary arithmetic of fixed width integers. This gives the spin matrices as a Lie subalgebra of a Z-graded associative algebra (rather than the usual N-filtered Clifford algebra). Our description gives a quick way to write down the spin matrices, and gives a way to encode some extra structure, such as the real structure which is invariant under the compact real form, for some n. Additionally we can encode the spin representations combinatorially as (coloured) graphs.en_US
dc.descriptionSource at <a href=https://www.emis.de/journals/AM/index.html>https://www.emis.de/journals/AM/index.html</a>.en_US
dc.identifier.citationWinther. SPIN REPRESENTATIONS AND BINARY NUMBERS. Archivum mathematicum. 2024;60(4):231-241en_US
dc.identifier.cristinIDFRIDAID 2345024
dc.identifier.doi10.5817/AM2024-4-231
dc.identifier.issn0044-8753
dc.identifier.issn1212-5059
dc.identifier.urihttps://hdl.handle.net/10037/36270
dc.language.isoengen_US
dc.publisherMasaryk Universityen_US
dc.relation.journalArchivum mathematicum
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)en_US
dc.titleSpin representations and binary numbersen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)