dc.contributor.author | Dutta, Surjendu Bikash | |
dc.contributor.author | Schürstedt-Seher, Jasmin Celine | |
dc.contributor.author | Engdahl, Anders Kokkvoll | |
dc.contributor.author | Hübner, Wolfgang | |
dc.contributor.author | Belle, Stefan | |
dc.contributor.author | Szafranska, Karolina Joanna | |
dc.contributor.author | McCourt, Peter Anthony | |
dc.contributor.author | Hellmann, Ralf | |
dc.contributor.author | Schüttpelz, Mark | |
dc.contributor.author | Huser, Thomas | |
dc.date.accessioned | 2025-01-23T10:37:27Z | |
dc.date.available | 2025-01-23T10:37:27Z | |
dc.date.issued | 2024-12-25 | |
dc.description.abstract | Super-resolution optical microscopy (SRM) permits the visualization of
subcellular structures of biological samples beyond the diffraction limit of
light. To evaluate and utilize the specific strengths of each SRM technique a
combined approach in the form of correlative super-resolution imaging is
essential. Here, the correlative SRM imaging of the ultrastructure of rat liver
sinusoidal endothelial cells (LSECs) across a large field of view (FOV) with 3D
structured illumination microscopy (3D-SIM) and single-molecule localization
microscopy (SMLM), facilitated by a transparent polymer photonic waveguide
chip, is presented. This waveguide is not only used for chip-based total
internal reflection fluorescence (TIRF) excitation across a large FOV, but also
enables the excitation and collection of single-molecule fluorescence via the
inverted microscope configuration. Furthermore, the structural design of the
waveguides allows to identify and correlate sample positions across multiple
microscopes. This correlative SIM and multi-modality SMLM imaging
provides a high throughput (FOV of ≈180 μm × 120 μm) method to analyze
the structural morphology of LSECs with high spatial resolution (≈50 nm).
Furthermore, waveguide chip-based TIRF excitation also yields a significant
reduction of background signals. | en_US |
dc.identifier.citation | Dutta, Schürstedt-Seher, Engdahl, Hübner, Belle, Szafranska, McCourt, Hellmann, Schüttpelz, Huser. Correlative Super-Resolution Imaging of Cellular Nanopores Facilitated by Transparent Polymer Waveguide Chips. Advanced Optical Materials. 2024 | en_US |
dc.identifier.cristinID | FRIDAID 2342834 | |
dc.identifier.doi | 10.1002/adom.202402783 | |
dc.identifier.issn | 2195-1071 | |
dc.identifier.uri | https://hdl.handle.net/10037/36322 | |
dc.language.iso | eng | en_US |
dc.publisher | Wiley | en_US |
dc.relation.journal | Advanced Optical Materials | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/101046928/EU/ Long-term Microphysiological Sample Imaging for Evaluation of Polypharmacy in Liver/DeLIVERY | en_US |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2024 The Author(s) | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | en_US |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | en_US |
dc.title | Correlative Super-Resolution Imaging of Cellular Nanopores Facilitated by Transparent Polymer Waveguide Chips | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |