Show simple item record

dc.contributor.authorAgarwal, Rohit
dc.contributor.authorHorsch, Ludwig Alexander
dc.contributor.authorAgarwal, Krishna
dc.contributor.authorPrasad, Dilip Kumar
dc.date.accessioned2025-02-13T08:34:51Z
dc.date.available2025-02-13T08:34:51Z
dc.date.issued2024-04-07
dc.description.abstractThe domain of online learning has experienced multifaceted expansion owing to its prevalence in real-life applications. Nonetheless, this progression operates under the assumption that the input feature space of the streaming data remains constant. In this survey paper, we address the topic of online learning in the context of haphazard inputs, explicitly foregoing such an assumption. We discuss, classify, evaluate, and compare the methodologies that are adept at modeling haphazard inputs, additionally providing the corresponding code implementations and their carbon footprint. Moreover, we classify the datasets related to the field of haphazard inputs and introduce evaluation metrics specifically designed for datasets exhibiting imbalance.en_US
dc.identifier.citationAgarwal, Horsch, Agarwal, Prasad. Online Learning under Haphazard Input Conditions: A Comprehensive Review and Analysis. arXiv. 2024en_US
dc.identifier.cristinIDFRIDAID 2358234
dc.identifier.doi10.48550/arXiv.2404.04903
dc.identifier.urihttps://hdl.handle.net/10037/36487
dc.language.isoengen_US
dc.publisherCornell Universityen_US
dc.relation.journalarXiv
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.titleOnline Learning under Haphazard Input Conditions: A Comprehensive Review and Analysisen_US
dc.type.versionsubmittedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record