Vis enkel innførsel

dc.contributor.advisorGodtliebsen, Fred
dc.contributor.authorHindberg, Kristian
dc.date.accessioned2012-07-03T09:09:30Z
dc.date.available2012-07-03T09:09:30Z
dc.date.issued2012-03-23
dc.description.abstractThe number of scale-space statistical algorithms has been greatly increased over the last 15 years. The concept originated from computer vision, introduced in Lindeberg (1994). The seminal paper by Chaudhuri and Marron (1999) brought the scale-space concept into smoothing of curves and kernel density estimation through the SiZer tool. By using all relevant smoothing bandwidths, i.e., the scale part, SiZer allows the user to look for interesting features in the smoothed curves or density estimates simultaneously on all bandwidths. In the years following, a number of classical statistical problems were also included in the family of scale-space algorithms. In this thesis, new scale-space algorithms for four such classical statistical problems are suggested. Paper II presents two closely related problems, addressed with highly similar approaches. Paper I addresses spectral scale-space analysis. Peaks found in the estimated spectral density function of evenly sampled stationary signals are typically of great interest for scientists. A peak found at a given frequency translates to potential (hidden) periodicities in a data set. Therefore, algorithms to determine which spectral peaks that really are significant are important in real-world applications. The presented algorithm uses the infamous periodogram, for reasons explained later. The different Fourier frequencies are the space part of the algorithm, while the scale part is introduced through a smoothing parameter of an assumed prior distribution. By using the Integrated Nested Laplace Approximation, a full posterior distribution can be constructed, from which the needed p-values are found. Unlike Papers I and III, Paper II presents a scale-space approach without introducing a prior distribution. Through two similar algorithms, two different questions are addressed: 1) Can a multivariate data set be considered to originate from some unspecified multivariate Gaussian distribution? 2) Can k multivariate data sets be considered to originate from some unspecified multivariate distribution? The scale part of both algorithms is connected to a weighted summation across neighboring dimensions. The number of dimensions that are summed across is given by the scale parameter. The space parameter is connected to the time or location index of the data series. The algorithms do not need to invert estimated covariance matrices, thereby they can handle the High Dimension Low Sample Size case, where most comparable methods fail. Paper III brings the scale-space concept into long-range dependence and wavelet analysis. The basis of this third paper is the wavelet coefficients resulting from linear filtering of the data with localized wavelet filters of increasing widths. The variance of these coefficients forms the wavelet variance. The space part is connected to the different wavelet filters/scales. As in Paper I, the scale part is connected to the smoothing parameter of the prior distribution. The degree of long-range dependence is fully characterized by the Hurst parameter. This parameter can be estimated through linear regression of the natural logarithm of the wavelet variance. Determining for which scales this regression should be done is not trivial, an issue which the presented algorithm addresses. A time-divided/local wavelet analysis for detecting non-stationarities in the data is also presented in Paper III.en
dc.description.doctoraltypeph.d.en
dc.description.popularabstractFokusering samtidig på alle nivå For mange statistiske problemstillinger må en velge én eller flere parametere. For flerskalateknikker kan en unngå dette ved å se på alle mulige parametervalg/fokuseringsnivå samtidig. Avhandlingens tittel er ”Scale-Space Methodology Applied to Spectral Feature Detection, Multinormality Testing and the k-sample Problem, and Wavelet Variance Analysis”. Avhandlingen er til graden Philosophiae Doctor (Ph.D) og skal forsvares fredag 23. mars 2012. Professor Fred Godtliebsen og forskere tilknyttet han har over mange år utviklet nye statistiske metoder knyttet opp til flerskalakonseptet. Kort sagt så ser en på et problem med alle relevante fokuseringsgrader samtidig i flerskalateknikker. Målet var å utvikle nye flerskalabaserte statistiske metoder for kjente statistiske problemstillinger. Avhandlingen består av tre artikler som anvender flerskalaprinsippet på ulike klassiske statistiske problemstillinger. Det første arbeidet omhandler identifisering av periodiske komponenter (for eksempel årlige sykluser) i tidsrekkedata. Den andre artikkelen ser på to problem. Først presenteres en ny metode for å teste om et flerdimensjonalt datasett kan antas å følge en Gauss-fordeling, noe som ofte inngår som en antagelse i videre statistiske analyser. Ofte sjekkes gyldigheten til denne antagelsen ikke godt nok. Det andre problemet omhandler hvorvidt to eller flere datasett kan antas å stamme fra samme (ukjente) flerdimensjonale sannsynlighetsfordeling. I det tredje arbeidet presenteres en ny tidsrekkebasert metode for undersøkelse av kort- og langtrekkende avhengigheter og for å oppdage ikke-stasjonæriteter. Dette gjøres via en wavelet-analyse. En wavelet-analyse angir for hvilke par av tidspunkter og ”frekvenser” signalets ”energi” er sterkest koblet til. Kristian Hindberg ble født i Tromsø i 1978. Han har hovedfag i fysikk ved UiT fra 2003 og Master of Science in Space Studies fra International Space University i Strasbourg fra 2006. I perioden 2004-2005 jobbet han som forsker ved Forsvarets forskningsinstitutt innen missilforsvar. Forskningsinteresser inkluderer flerskalateknikker, tidsrekkeanalyse og bildebehandling. Etter doktorgraden vil han gå over i en postdoktorstilling ved Nasjonalt senter for samhandling og telemedisin i Tromsø. Navn: Kristian Hindberg Institusjon/institutt: Universitetet i Tromsø/Institutt for matematikk og statistikk Mobilnummer: 91697871 E-postadresse: kristian.hindberg@uit.noen
dc.descriptionThe papers of this thesis are not available in Munin: <br/>1. Sigrunn H. Sørbye, Kristian Hindberg, Lena R. Olsen and Håvard Rue: 'Bayesian multiscale feature detection of log-spectral densities', Computational Statistics and Data Analysis (2009), vol. 53, num. 11, pp. 3746-3754. Available at <a href=http://dx.doi.org/10.1016/j.csda.2009.03.020>http://dx.doi.org/10.1016/j.csda.2009.03.020</a> <br/>2. Kristian Hindberg, Jan Hannig and Fred Godtliebsen: 'A novel scale-space approach for multinormality testing and the k-sample problem' (manuscript submitted to Computational Statistics and Data Analysis) <br/>3. Kristian Hindberg, Donald B. Percival, Tor Arne Øigård, Stilian A. Stoev, Fred Godtliebsen and Murad S. Taqqu: 'A scale-space wavelet visualization tool for exploring non-stationarities in long-range dependent time series', (manuscript)en
dc.identifier.isbn978-82-8236-063-0
dc.identifier.isbn978-82-8236-062-3
dc.identifier.urihttps://hdl.handle.net/10037/4324
dc.identifier.urnURN:NBN:no-uit_munin_4034
dc.language.isoengen
dc.publisherUniversitetet i Tromsøen
dc.publisherUniversity of Tromsøen
dc.rights.accessRightsopenAccess
dc.rights.holderCopyright 2012 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)en_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Statistics: 412en
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Statistikk: 412en
dc.titleScale-space methodology applied to spectral feature detection, multinormality testing and the k-sample problem, and wavelet variance analysisen
dc.typeDoctoral thesisen
dc.typeDoktorgradsavhandlingen


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)