dc.contributor.author | Akbari, Vahid | |
dc.contributor.author | Doulgeris, Anthony Paul | |
dc.contributor.author | Gabriele, Moser | |
dc.contributor.author | Eltoft, Torbjørn | |
dc.contributor.author | Sebastiano, B. Serpico | |
dc.contributor.author | Anfinsen, Stian Normann | |
dc.date.accessioned | 2013-07-05T08:12:05Z | |
dc.date.available | 2013-07-05T08:12:05Z | |
dc.date.issued | 2013 | |
dc.description.abstract | This paper proposes a novel unsupervised, non-Gaussian, and contextual segmentation method that combines an advanced statistical distribution with spatial contextual informa-tion for multilook polarimetric synthetic aperture radar (PolSAR)data. This extends on previous studies that have shown the added value of both non-Gaussian modeling and contextual smoothing individually or for intensity channels only. The method is based on a Markov random field (MRF) model that integrates a K-Wishart distribution for the PolSAR data statistics conditioned to each im-age cluster and a Potts model for the spatial context. Specifically,the proposed algorithm is constructed based upon the stochastic expectation maximization (SEM) algorithm. A new formulation of SEM is developed to jointly perform clustering of the data and parameter estimation of theK-Wishart distribution and the MRF model. Experiments on simulated and real PolSAR data demonstrate the added value of using an appropriate statistical representation, in combination with contextual smoothing | en |
dc.description | This article is part of Vahid Akbari's doctoral thesis, available in Munin at <a href=http://hdl.handle.net/10037/5243>http://hdl.handle.net/10037/5243</a> | en |
dc.identifier.citation | IEEE Transactions on Geoscience and Remote Sensing 51(2013) nr. 4 s. 2442-2453 | en |
dc.identifier.cristinID | FRIDAID 946922 | |
dc.identifier.doi | http://dx.doi.org/10.1109/TGRS.2012.2211367 | |
dc.identifier.issn | 0196-2892 | |
dc.identifier.uri | https://hdl.handle.net/10037/5251 | |
dc.identifier.urn | URN:NBN:no-uit_munin_4969 | |
dc.language.iso | eng | en |
dc.publisher | IEEE Xplore | en |
dc.rights.accessRights | openAccess | |
dc.subject | VDP::Mathematics and natural science: 400 | en |
dc.subject | VDP::Matematikk og Naturvitenskap: 400 | en |
dc.title | A Textural–Contextual Model for Unsupervised Segmentation of Multipolarization Synthetic Aperture Radar Images | en |
dc.type | Journal article | en |
dc.type | Tidsskriftartikkel | en |
dc.type | Peer reviewed | en |