Vis enkel innførsel

dc.contributor.authorGohr, Sebastian
dc.contributor.authorHrobárik, Peter
dc.contributor.authorRepisky, Michal
dc.contributor.authorKomorovsky, Stanislav
dc.contributor.authorRuud, Kenneth
dc.contributor.authorKaupp, Martin
dc.date.accessioned2016-03-10T12:43:31Z
dc.date.available2016-03-10T12:43:31Z
dc.date.issued2015-12-04
dc.description.abstractThe four-component matrix Dirac-Kohn-Sham (mDKS) implementation of EPR g- and hyperfine A-tensor calculations within a restricted kinetic balance framework in the ReSpect code has been extended to hybrid functionals. The methodology is validated for an extended set of small 4d1 and 5d1 [MEXn] q systems, and for a series of larger Ir(II) and Pt(III) d7 complexes (S=1/2) with particularly large g-tensor anisotropies. Different density functionals (PBE, BP86, B3LYP-xHF, PBE0-xHF) with variable exact-exchange admixture x (ranging from 0% to 50%) have been evaluated, and the influence of structure and basis set has been examined. Notably, hybrid functionals with exact-exchange admixture of about 40% provide the best agreement with experiment and clearly outperform the generalized-gradient approximation (GGA) functionals, in particular for the hyperfine couplings. Comparison with computations at the one-component second-order perturbational level within the DouglasKroll-Hess framework (1c-DKH), and a scaling of the speed of light at the four-component mDKS level, provide insight into the importance of higher-order relativistic effects for both properties. In the more extreme cases of some iridium(II) and platinum(III) complexes, the widely used leading-order perturbational treatment of SO effects in EPR calculations fails to reproduce not only the magnitude but also the sign of certain g-shift components (with the contribution of higher-order SO effects amounting to several hundreds of ppt in 5d complexes). The four-component hybrid mDKS calculations perform very well, giving overall good agreement with the experimental data.en_US
dc.descriptionAccepted manuscript version. Copyright 2015 ACS Publications. The following article appeared in Journal of Physical Chemistry A 2015, 119(51):12892-12905 and may be found at <a href=http://dx.doi.org/10.1021/acs.jpca.5b10996>http://dx.doi.org/10.1021/acs.jpca.5b10996</a>en_US
dc.identifier.citationJournal of Physical Chemistry A 2015, 119(51):12892-12905en_US
dc.identifier.cristinIDFRIDAID 1310905
dc.identifier.doi10.1021/acs.jpca.5b10996
dc.identifier.issn1089-5639
dc.identifier.urihttps://hdl.handle.net/10037/8853
dc.identifier.urnURN:NBN:no-uit_munin_8412
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.projectIDNorges forskningsråd: 191251en_US
dc.relation.projectIDEU: 279619en_US
dc.relation.projectIDNorges forskningsråd: 177558en_US
dc.relation.projectIDNorges forskningsråd: 179568en_US
dc.relation.projectIDNorges forskningsråd: 214095en_US
dc.rights.accessRightsopenAccess
dc.subjectDirac-Kohn-Sham calculationsen_US
dc.subjectDirac-Coulomb Hamiltonianen_US
dc.subjectexchangecorrelation functionalsen_US
dc.subjectg-tensoren_US
dc.subjecthyperfine tensoren_US
dc.subjectrelativistic effectsen_US
dc.subjectspin-orbit couplingen_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Kjemi: 440en_US
dc.subjectVDP::Mathematics and natural science: 400::Chemistry: 440en_US
dc.titleFour-Component Relativistic Density Functional Theory Calculations of EPR g- and Hyperfine-Coupling Tensors Using Hybrid Functionals: Validation on Transition-Metal Complexes with Large Tensor Anisotropies and Higher-Order Spin-Orbit Effectsen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel