dc.contributor.author | Johnsen, Trygve | |
dc.contributor.author | Shiromoto, Keisuke | |
dc.contributor.author | Verdure, Hugues | |
dc.date.accessioned | 2016-03-21T09:42:05Z | |
dc.date.available | 2016-03-21T09:42:05Z | |
dc.date.issued | 2015-10-01 | |
dc.description.abstract | We give a generalization of Kung’s theorem on critical exponents of linear codes over a finite field, in terms of sums of extended weight polynomials of linear codes. For all i=k+1,…,ni=k+1,…,n, we give an upper bound on the smallest integer m such that there exist m codewords whose union of supports has cardinality at least i. | en_US |
dc.description | Accepted manuscript version. The final publication is available at Springer via <a href=http://doi.org/10.1007/s10623-015-0139-6>http://doi.org/10.1007/s10623-015-0139-6</a>. | en_US |
dc.identifier.citation | Designs, Codes and Cryptography 2015 | en_US |
dc.identifier.cristinID | FRIDAID 1306329 | |
dc.identifier.doi | 10.1007/s10623-015-0139-6 | |
dc.identifier.issn | 1573-7586 | |
dc.identifier.uri | https://hdl.handle.net/10037/9044 | |
dc.identifier.urn | URN:NBN:no-uit_munin_8617 | |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.rights.accessRights | openAccess | |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410 | en_US |
dc.subject | Linear code | en_US |
dc.subject | Kung’s bound | en_US |
dc.subject | Generalized Singleton bound | en_US |
dc.title | A generalization of Kung’s theorem | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |