ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Det helsevitenskapelige fakultet
  • Institutt for medisinsk biologi
  • Artikler, rapporter og annet (medisinsk biologi)
  • View Item
  •   Home
  • Det helsevitenskapelige fakultet
  • Institutt for medisinsk biologi
  • Artikler, rapporter og annet (medisinsk biologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cleavage of the urokinase receptor (uPAR) on oral cancer cells: Regulation by transforming growth factor - beta1 (TGF-beta1) and potential effects on migration and invasion

Permanent link
https://hdl.handle.net/10037/11829
DOI
https://doi.org/10.1186/s12885-017-3349-7
Thumbnail
View/Open
article.pdf (3.203Mb)
(PDF)
Date
2017-05-19
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Magnussen, Synnøve; Hadler-Olsen, Elin Synnøve; Costea, Daniela Elena; Berg, Eli; Cavalcanti Jacobsen, Cristiane de Albuquerque; Mortensen, Bente; Salo, Tuula; Martinez, Inigo Zubiavrre; Winberg, Jan-Olof; Uhlin-Hansen, Lars; Svineng, Gunbjørg
Abstract
Background: Urokinase plasminogen activator (uPA) receptor (uPAR) is up-regulated at the invasive tumour front of human oral squamous cell carcinoma (OSCC), indicating a role for uPAR in tumour progression. We previously observed elevated expression of uPAR at the tumour-stroma interface in a mouse model for OSCC, which was associated with increased proteolytic activity. The tumour microenvironment regulated uPAR expression, as well as its glycosylation and cleavage. Both full-length- and cleaved uPAR (uPAR (II-III)) are involved in highly regulated processes such as cell signalling, proliferation, migration, stem cell mobilization and invasion. The aim of the current study was to analyse tumour associated factors and their effect on uPAR cleavage, and the potential implications for cell proliferation, migration and invasion.
Methods: Mouse uPAR was stably overexpressed in the mouse OSCC cell line AT84. The ratio of full-length versus cleaved uPAR as analysed by Western blotting and its regulation was assessed by addition of different protease inhibitors and transforming growth factor - β 1(TGF- β 1). The role of uPAR cleavage in cell proliferation and migration was analysed using real-time cell analysis and invasion was assessed using the myoma invasion model.
Results: We found that when uPAR was overexpressed a proportion of the receptor was cleaved, thus the cells presented both full-length uPAR and uPAR (II-III). Cleavage was mainly performed by serine proteases and urokinase plasminogen activator (uPA) in particular. When the OSCC cells were stimulated with TGF- β 1, the production of the uPA inhibitor PAI-1 was increased, resulting in a reduction of uPAR cleavage. By inhibiting cleavage of uPAR, cell migration was reduced, and by inhibiting uPA activity, invasion was reduced. We could also show that medium containing soluble uPAR (suPAR), and cleaved soluble uPAR (suPAR (II-III)), induced migration in OSCC cells with low endogenous levels of uPAR.
Conclusions: These results show that soluble factors in the tumour microenvironment, such as TGF- β 1, PAI-1 and uPA, can influence the ratio of full length and uPAR (II-III) and thereby potentially effect cell migration and invasion. Resolving how uPAR cleavage is controlled is therefore vital for understanding how OSCC progresses and potentially provides new targets for therapy.
Description
Source at https://doi.org/10.1186/s12885-017-3349-7
Publisher
BioMed Central
Citation
Magnussen S, Hadler-Olsen ES, Costea DE, Berg E, Cavalcanti Jacobsen CDAC, Mortensen B, Salo T, Martinez IZ, Winberg J-O, Uhlin-Hansen L, Svineng G. Cleavage of the urokinase receptor (uPAR) on oral cancer cells: Regulation by transforming growth factor - beta1 (TGF-beta1) and potential effects on migration and invasion. BMC Cancer. 2017;17
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (medisinsk biologi) [1103]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)