ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Regulation of gene expression is associated with tolerance of the Arctic copepod Calanus glacialis to CO2-acidified sea water

Permanent link
https://hdl.handle.net/10037/12027
DOI
https://doi.org/10.1002/ece3.3063
Thumbnail
View/Open
article.pdf (898.4Kb)
(PDF)
Date
2017-08-02
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Bailey, Allison Michelle; De Wit, Pierre; Thor, Peter; Browman, Howard; Bjelland, Reidun Marie; Shema, Steven; Fields, David M.; Runge, Jeffrey A.; Thompson, Cameron; Hop, Haakon
Abstract
Ocean acidification is the increase in seawater pCO2 due to the uptake of atmospheric anthropogenic CO2, with the largest changes predicted to occur in the Arctic seas. For some marine organisms, this change in pCO2, and associated decrease in pH, represents a climate change-related stressor. In this study, we investigated the gene expression patterns of nauplii of the Arctic copepod Calanus glacialis cultured at low pH levels. We have previously shown that organismal-level performance (development, growth, respiration) of C. glacialis nauplii is unaffected by low pH. Here, we investigated the molecular-level response to lowered pH in order to elucidate the physiological processes involved in this tolerance. Nauplii from wild-caught C. glacialis were cultured at four pH levels (8.05, 7.9, 7.7, 7.5). At stage N6, mRNA was extracted and sequenced using RNA-seq. The physiological functionality of the proteins identified was categorized using Gene Ontology and KEGG pathways. We found that the expression of 151 contigs varied significantly with pH on a continuous scale (93% downregulated with decreasing pH). Gene set enrichment analysis revealed that, of the processes downregulated, many were components of the universal cellular stress response, including DNA repair, redox regulation, protein folding, and proteolysis. Sodium:proton antiporters were among the processes significantly upregulated, indicating that these ion pumps were involved in maintaining cellular pH homeostasis. C. glacialis significantly alters its gene expression at low pH, although they maintain normal larval development. Understanding what confers tolerance to some species will support our ability to predict the effects of future ocean acidification on marine organisms.
Description
Source at http://dx.doi.org/10.1002/ece3.3063 .
Publisher
Wiley
Citation
Bailey A, De Wit P, Thor P, Browman H.I., Bjelland RM, Shema S, Fields DM, Runge JA, Thompson C, Hop H. Regulation of gene expression is associated with tolerance of the Arctic copepod Calanus glacialis to CO2-acidified sea water. Ecology and Evolution. 2017;7(18):7145-7160
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (arktisk og marin biologi) [1637]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)