Improving the Decision-making of Reverse Logistics Network Design Part II: An Improved Scenario-based Solution Method and Numerical Experimentation
Permanent link
https://hdl.handle.net/10037/12714Date
2018-02-11Type
Peer reviewedChapter
Bokkapittel
Abstract
The study of the network design problems related to reverse supply chain and reverse logistics is of great interest for both academicians and practitioners due to its important role for a sustainable society. However, reverse logistics network design is a complex decision-making problem that involves several interactive factors and faces many uncertainties. Thus, in order to improve the reverse logistics network design, this paper proposes a new optimization model under stochastic environment and an improved solution method for network design of a multi-stage multi-product reveres supply chain. The study is presented in a series of two parts. Part I presents the relevant literature and formulates a stochastic mixed integer linear programming (MILP) for improving the decision-making of the reverse logistics network design. Part II improves the solution methods for the proposed stochastic programming and illustrates the application through a numerical experimentation.
Description
Accepted manuscript version, 12 months embargo from publishing date..
Link to publisher's version: https://doi.org/10.1007/978-981-10-5768-7_45