ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Complementary biomarker-based methods for characterising Arctic sea ice conditions: A case study comparison between multivariate analysis and the PIP25 index

Permanent lenke
https://hdl.handle.net/10037/12839
DOI
https://doi.org/10.1016/j.gca.2017.11.001
Thumbnail
Åpne
article.pdf (2.538Mb)
accepted manuscript version (PDF)
Dato
2017-11-10
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Koseoglu, Denizcan; Belt, Simon T.; Smik, Lukas; Yao, Haoyi; Panieri, Giuliana; Knies, Jochen
Sammendrag
The discovery of IP25 as a qualitative biomarker proxy for Arctic sea ice and subsequent introduction of the so-called PIP25 index for semi-quantitative descriptions of sea ice conditions has significantly advanced our understanding of long-term paleo Arctic sea ice conditions over the past decade. We investigated the potential for classification tree1 (CT) models to provide a further approach to paleo Arctic sea ice reconstruction through analysis of a suite of highly branched isoprenoid (HBI) biomarkers in ca. 200 surface sediments from the Barents Sea. Four CT models constructed using different HBI assemblages revealed IP25 and an HBI triene as the most appropriate classifiers of sea ice conditions, achieving a >90% cross-validated classification rate. Additionally, lower model performance for locations in the Marginal Ice Zone (MIZ) highlighted difficulties in characterisation of this climatically-sensitive region. CT model classification and semi-quantitative PIP25- derived estimates of spring sea ice concentration (SpSIC) for four downcore records from the region were consistent, although agreement between proxy and satellite/observational records was weaker for a core from the west Svalbard margin, likely due to the highly variable sea conditions. The automatic selection of appropriate biomarkers for description of sea ice conditions, quantitative model assessment, and insensitivity to the c-factor used in the calculation of the PIP25 index are key attributes of the CT approach, and we provide an initial comparative assessment between these potentially complementary methods. The CT model should be capable of generating longer-term temporal shifts in sea ice conditions for the climatically sensitive Barents Sea.
Beskrivelse
Accepted manuscript version. Published version available in Geochimica et Cosmochimica Acta, 222, 406-420.
Forlag
Elsevier
Sitering
Koseoglu, D., Belt, S. T., Smik, L., Yao, H., Panieri, G. & Knies, J. (2017). Complementary biomarker-based methods for characterising Arctic sea ice conditions: A case study comparison between multivariate analysis and the PIP25 index. Geochimica et Cosmochimica Acta, 222, 406-420. http://doi.org/10.1016/j.gca.2017.11.001
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (geovitenskap) [816]

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring