ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ship Performance and Navigation Data Compression and Communication under Autoencoder System Architecture

Permanent lenke
https://hdl.handle.net/10037/13133
DOI
https://doi.org/10.1016/j.joes.2018.04.002
Thumbnail
Åpne
article.pdf (2.645Mb)
(PDF)
Dato
2018-04-21
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Perera, Lokukaluge Prasad; Mo, Brage
Sammendrag
Modern vessels are designed to collect, store and communicate large quantities of ship performance and navigation information through complex onboard data handling processes. That data should be transferred to shore based data centers for further analysis and storage. However, the associated transfer cost in large-scale data sets is a major challenge for the shipping industry, today. The same cost relates to the amount of data that are transferring through various communication networks (i.e. satellites and wireless networks), i.e. between vessels and shore based data centers. Hence, this study proposes to use an autoencoder system architecture (i.e. a deep learning approach) to compress ship performance and navigation parameters (i.e. reduce the number of parameters) and transfer through the respective communication networks as reduced data sets. The data compression is done under the linear version of an autoencoder that consists of principal component analysis (PCA), where the respective principal components (PCs) represent the structure of the data set. The compressed data set is expanded by the same data structure (i.e. an autoencoder system architecture) at the respective data center requiring further analyses and storage. A data set of ship performance and navigation parameters in a selected vessel is analyzed (i.e. data compression and expansion) through an autoencoder system architecture and the results are presented in this study. Furthermore, the respective input and output values of the autoencoder are also compared as statistical distributions and sample number series to evaluate its performance.
Beskrivelse
Source at https://doi.org/10.1016/j.joes.2018.04.002 .
Forlag
Elsevier
Sitering
Perera, L.P. & Mo, B. (2018). Ship Performance and Navigation Data Compression and Communication under Autoencoder System Architecture. Journal of Ocean Engineering and Science, 3(2), 133-143. https://doi.org/10.1016/j.joes.2018.04.002.
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (teknologi og sikkerhet) [360]

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring