Show simple item record

dc.contributor.authorPratt, J
dc.contributor.authorBusse, A
dc.contributor.authorMuller, WC
dc.contributor.authorWatkins, NW
dc.contributor.authorChapman, Sandra
dc.date.accessioned2018-07-11T13:40:49Z
dc.date.available2018-07-11T13:40:49Z
dc.date.issued2017-06-20
dc.description.abstractWe investigate the utility of the convex hull of many Lagrangian tracers to analyze transport properties of turbulent flows with different anisotropy. In direct numerical simulations of statistically homogeneous and stationary Navier–Stokes turbulence, neutral fluid Boussinesq convection, and MHD Boussinesq convection a comparison with Lagrangian pair dispersion shows that convex hull statistics capture the asymptotic dispersive behavior of a large group of passive tracer particles. Moreover, convex hull analysis provides additional information on the sub-ensemble of tracers that on average disperse most efficiently in the form of extreme value statistics and flow anisotropy via the geometric properties of the convex hulls. We use the convex hull surface geometry to examine the anisotropy that occurs in turbulent convection. Applying extreme value theory, we show that the maximal square extensions of convex hull vertices are well described by a classic extreme value distribution, the Gumbel distribution. During turbulent convection, intermittent convective plumes grow and accelerate the dispersion of Lagrangian tracers. Convex hull analysis yields information that supplements standard Lagrangian analysis of coherent turbulent structures and their influence on the global statistics of the flow.en_US
dc.description.sponsorshipTthe Max-Planck Society in the framework of the Inter-institutional Research Initiative 'Turbulent Transport and Ion Heating; Reconnection and Electron Acceleration in Solar and Fusion Plasmas' of the MPI for Solar System Research; Katlenburg-Lindau; The Institute for Plasma Physics, Garching (project MIFIF-A-AERO8047)en_US
dc.descriptionSource at: <a href=http://doi.org/10.1088/1367-2630/aa6fe8> http://doi.org/10.1088/1367-2630/aa6fe8</a>en_US
dc.identifier.citationPratt, J., Busse, A., Muller, W. C., Watkins, N. W. & Chapman, S. (2017). Extreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convection. New Journal of Physics, 19(6). http://doi.org/10.1088/1367-2630/aa6fe8en_US
dc.identifier.cristinIDFRIDAID 1544542
dc.identifier.doi10.1088/1367-2630/aa6fe8
dc.identifier.issn1367-2630
dc.identifier.urihttps://hdl.handle.net/10037/13218
dc.language.isoengen_US
dc.publisherIOP Publishingen_US
dc.relation.journalNew Journal of Physics
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/320478/EU/Toward a new generation of multi-dimensional stellar evolution models: the TOol of the FUture/TOFU/en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/KLIMAFORSK/229754/Norway/Long-range memory in Earths climate response and its implications for future global warming//en_US
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Fysikk: 430en_US
dc.subjectVDP::Mathematics and natural science: 400::Physics: 430en_US
dc.titleExtreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convectionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record