ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Penalising Model Component Complexity: A Principled, Practical Approach to Constructing Priors

Permanent link
https://hdl.handle.net/10037/13263
DOI
https://doi.org/10.1214/16-STS576
Thumbnail
View/Open
article.pdf (861Kb)
Accepted manuscript version (PDF)
Date
2017-04-06
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Simpson, Daniel; Rue, Håvard; Riebler, Andrea Ingeborg; Martins, Thiago Guerrera; Sørbye, Sigrunn Holbek
Abstract
In this paper, we introduce a new concept for constructing prior distributions. We exploit the natural nested structure inherent to many model components, which defines the model component to be a flexible extension of a base model. Proper priors are defined to penalise the complexity induced by deviating from the simpler base model and are formulated after the input of a user-defined scaling parameter for that model component, both in the univariate and the multivariate case. These priors are invariant to reparameterisations, have a natural connection to Jeffreys' priors, are designed to support Occam's razor and seem to have excellent robustness properties, all which are highly desirable and allow us to use this approach to define default prior distributions. Through examples and theoretical results, we demonstrate the appropriateness of this approach and how it can be applied in various situations.
Description
Accepted manuscript version. Published version available at https://doi.org/10.1214/16-STS576.
Publisher
Institute of Mathematical Statistics (IMS)
Citation
Simpson, D., Rue, H., Riebler. A., Martins, T.G. & Sørbye, S.H. (2017). Penalising Model Component Complexity: A Principled, Practical Approach to Constructing Priors. Statistical Science, 32(1), 1-28. https://doi.org/10.1214/16-STS576
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (matematikk og statistikk) [357]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)