ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Det helsevitenskapelige fakultet
  • Institutt for klinisk medisin
  • Artikler, rapporter og annet (klinisk medisin)
  • View Item
  •   Home
  • Det helsevitenskapelige fakultet
  • Institutt for klinisk medisin
  • Artikler, rapporter og annet (klinisk medisin)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes

Permanent link
https://hdl.handle.net/10037/13642
DOI
https://doi.org/10.1038/nnano.2017.47
Thumbnail
View/Open
article.pdf (1.176Mb)
Submitted manuscript version (PDF)
Date
2017-04-10
Type
Journal article
Manuskript
Tidsskriftartikkel
Peer reviewed
Preprint

Author
Wibroe, Peter Popp; Anselmo, Aaron C; Nilsson, Per; Sarode, Apoorva; Gupta, Vivek; Urbanics, Rudolf; Szebeni, Janos; Hunter, Alan Christy; Mitragotri, Samir; Mollnes, Tom Eirik; Moghimi, Seyed Moein
Abstract
Intravenously injected nanopharmaceuticals, including PEGylated nanoparticles, induce adverse cardiopulmonary reactions in sensitive human subjects, and these reactions are highly reproducible in pigs. Although the underlying mechanisms are poorly understood, roles for both the complement system and reactive macrophages have been implicated. Here, we show the dominance and importance of robust pulmonary intravascular macrophage clearance of nanoparticles in mediating adverse cardiopulmonary distress in pigs irrespective of complement activation. Specifically, we show that delaying particle recognition by macrophages within the first few minutes of injection overcomes adverse reactions in pigs using two independent approaches. First, we changed the particle geometry from a spherical shape (which triggers cardiopulmonary distress) to either rod- or disk-shape morphology. Second, we physically adhered spheres to the surface of erythrocytes. These strategies, which are distinct from commonly leveraged stealth engineering approaches such as nanoparticle surface functionalization with poly(ethylene glycol) and/or immunological modulators, prevent robust macrophage recognition, resulting in the reduction or mitigation of adverse cardiopulmonary distress associated with nanopharmaceutical administration.
Description
Submitted manuscript version. Published version available at https://doi.org/10.1038/NNANO.2017.47.
Publisher
Nature Publishing Group
Citation
Wibroe, P.P., Anselmo, A.C., Nilsson, P.H., Sarode, A., Gupta, V., Urbanics, R., ... Moghimi, S.M. (2017). Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes. Nature Nanotechnology, 12(6), 589-594. https://doi.org/10.1038/NNANO.2017.47
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (klinisk medisin) [1974]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)