dc.contributor.author | Myhre, Jonas Nordhaug | |
dc.contributor.author | Mikalsen, Karl Øyvind | |
dc.contributor.author | Løkse, Sigurd | |
dc.contributor.author | Jenssen, Robert | |
dc.date.accessioned | 2018-09-10T14:38:11Z | |
dc.date.available | 2018-09-10T14:38:11Z | |
dc.date.issued | 2017-12-02 | |
dc.description.abstract | In this paper we present a new algorithm for parameter-free clustering by mode seeking. Mode seeking, especially in the form of the mean shift algorithm, is a widely used strategy for clustering data, but at the same time prone to poor performance if the parameters are not chosen correctly. We propose to form a <i>clustering ensemble</i> consisting of repeated and bootstrapped runs of the recent kNN mode seeking algorithm, an algorithm which is faster than ordinary mean shift and more suited for high dimensional data. This creates a robust mode seeking clustering algorithm with respect to the choice of parameters and high dimensional input spaces, while at the same inheriting all other strengths of mode seeking in general. We demonstrate promising results on a number of synthetic and real data sets. | en_US |
dc.description | Accepted manuscript version. Published version available at <a href=https://doi.org/10.1016/j.patcog.2017.11.023> https://doi.org/10.1016/j.patcog.2017.11.023</a>. Accepted manuscript version, licensed <a href=http://creativecommons.org/licenses/by-nc-nd/4.0/> CC BY-NC-ND 4.0.</a> | en_US |
dc.identifier.citation | Myhre, J.N., Mikalsen, K.Ø., Løkse, S. & Jenssen, R. (2017). Robust clustering using a kNN mode seeking ensemble. Pattern Recognition, 76, 491-505. https://doi.org/10.1016/j.patcog.2017.11.023 | en_US |
dc.identifier.cristinID | FRIDAID 1536415 | |
dc.identifier.doi | https://doi.org/10.1016/j.patcog.2017.11.023 | |
dc.identifier.issn | 0031-3203 | |
dc.identifier.issn | 1873-5142 | |
dc.identifier.uri | https://hdl.handle.net/10037/13743 | |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.journal | Pattern Recognition | |
dc.relation.projectID | info:eu-repo/grantAgreement/RCN/IKTPLUSS/239844/Norway/Next Generation Kernel-Based Machine Learning for Big Missing Data Applied to Earth Observation// | en_US |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0031320317304776 | |
dc.rights.accessRights | openAccess | en_US |
dc.subject | VDP::Matematikk og naturvitenskap: 400::Matematikk: 410::Statistikk: 412 | en_US |
dc.subject | VDP::Mathematics and natural scienses: 400::Mathematics: 410::Statistics: 412 | en_US |
dc.subject | Density based clustering | en_US |
dc.subject | Consensus clustering | en_US |
dc.subject | kNN mode seeking | en_US |
dc.subject | Mean shift | en_US |
dc.subject | Ensemble clustering | en_US |
dc.title | Robust clustering using a kNN mode seeking ensemble | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |