Show simple item record

dc.contributor.authorRiedel, M.
dc.contributor.authorWallmann, K.
dc.contributor.authorBerndt, C
dc.contributor.authorPape, T.
dc.contributor.authorFreudenthal, T.
dc.contributor.authorBergenthal, M.
dc.contributor.authorBünz, Stefan
dc.contributor.authorBohrmann, G.
dc.date.accessioned2018-09-25T07:56:37Z
dc.date.available2018-09-25T07:56:37Z
dc.date.issued2018-03-30
dc.description.abstractDuring expedition MARIA S. MERIAN MSM57/2 to the Svalbard margin offshore Prins Karls Forland, the seafloor drill rig MARUM‐MeBo70 was used to assess the landward termination of the gas hydrate system in water depths between 340 and 446 m. The study region shows abundant seafloor gas vents, clustered at a water depth of ∼400 m. The sedimentary environment within the upper 100 m below seafloor (mbsf) is dominated by ice‐berg scours and glacial unconformities. Sediments cored included glacial diamictons and sheet‐sands interbedded with mud. Seismic data show a bottom simulating reflector terminating ∼30 km seaward in ∼760 m water depth before it reaches the theoretical limit of the gas hydrate stability zone (GHSZ) at the drilling transect. We present results of the first in situ temperature measurements conducted with MeBo70 down to 28 mbsf. The data yield temperature gradients between ∼38°C km<sup>−1</sup> at the deepest site (446 m) and ∼41°C km<sup>−1</sup> at a shallower drill site (390 m). These data constrain combined with in situ pore‐fluid data, sediment porosities, and thermal conductivities the dynamic evolution of the GHSZ during the past 70 years for which bottom water temperature records exist. Gas hydrate is not stable in the sediments at sites shallower than 390 m water depth at the time of acquisition (August 2016). Only at the drill site in 446 m water depth, favorable gas hydrate stability conditions are met (maximum vertical extent of ∼60 mbsf); however, coring did not encounter any gas hydrates.en_US
dc.description.sponsorshipGerman Research Foundation (DFG)en_US
dc.descriptionAn edited version of this paper was published by AGU. Copyright 2018 American Geophysical Union. Source at <a href=https://doi.org/10.1002/2017GC007288> https://doi.org/10.1002/2017GC007288</a>.en_US
dc.identifier.citationRiedel, M., Wallmann, K., Berndt, C., Pape, T., Freudenthal, T., Bergenthal, M., ... Bohrmann, G. (2018). In Situ Temperature Measurements at the Svalbard Continental Margin: Implications for Gas Hydrate Dynamics. Geochemistry Geophysics Geosystems, 19(4), 1165-1177. https://doi.org/10.1002/2017GC007288en_US
dc.identifier.cristinIDFRIDAID 1579421
dc.identifier.doi10.1002/2017GC007288
dc.identifier.issn1525-2027
dc.identifier.urihttps://hdl.handle.net/10037/13859
dc.language.isoengen_US
dc.publisherAmerican Geophysical Union (AGU)en_US
dc.relation.journalGeochemistry Geophysics Geosystems
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/SFF/223259/Norway/Centre for Arctic Gas Hydrate, Environment and Climate/CAGE/en_US
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Mathematics and natural science: 400::Geosciences: 450en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Geofag: 450en_US
dc.subjectgas hydratesen_US
dc.subjectSvalbard continental marginen_US
dc.subjectin situ temperature dataen_US
dc.titleIn Situ Temperature Measurements at the Svalbard Continental Margin: Implications for Gas Hydrate Dynamicsen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record