ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unsupervised Mixture-Eliminating Estimation of Equivalent Number of Looks for PolSAR Data

Permanent lenke
https://hdl.handle.net/10037/14161
DOI
https://doi.org/10.1109/TGRS.2017.2734064
Thumbnail
Åpne
article.pdf (2.305Mb)
Accepted manuscript version (PDF)
Dato
2017-08-22
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Hu, Dingsheng; Anfinsen, Stian Normann; Qiu, X; Doulgeris, Anthony Paul; Lei, Bin
Sammendrag
This paper addresses the impact of mixtures between classes on equivalent number of looks (ENL) estimation. We propose an unsupervised ENL estimator for polarimetric synthetic aperture radar (PolSAR) data, which is based on small sample estimates but incorporates a mixture-eliminating (ME) procedure to automatically assess the uniformity of the estimation windows. A statistical feature derived from a combination of linear and logarithmic moments is investigated and adopted in the procedure, as it has different mean values for samples from uniform and nonuniform windows. We introduce an approach to extract the approximated sampling distribution of this test statistic for uniform windows. Then the detection is conducted by a hypothesis test with adaptive thresholds determined by a nonuniformity ratio. Finally the experiments are performed on both simulated and real SAR data. The capability of the unsupervised ME procedure is verified with simulated data. In the real data experiments, the ENL estimates of Flevoland and San Francisco PolSAR images are analyzed, which show the robustness of the proposed ENL estimation for SAR scenes with different complexities.
Beskrivelse
Accepted manuscript version. Published version available at https://doi.org/10.1109/TGRS.2017.2734064.
Forlag
Institute of Electrical and Electronics Engineers (IEEE)
Sitering
Hu, D., Anfinsen, S.N., Qiu, X., Doulgeris, A.P. & Lei, B. (2017). Unsupervised Mixture-Eliminating Estimation of Equivalent Number of Looks for PolSAR Data. IEEE Transactions on Geoscience and Remote Sensing, 55(12), 6767-6779. https://doi.org/10.1109/TGRS.2017.2734064
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring