ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessing polarimetric SAR sea-ice classifications using consecutive day images

Permanent link
https://hdl.handle.net/10037/14398
DOI
https://doi.org/10.3189/2015AoG69A802
Thumbnail
View/Open
article.pdf (2.918Mb)
Publisher's version (PDF)
Date
2015
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Moen, Mari-Ann; Anfinsen, Stian Normann; Doulgeris, Anthony Paul; Renner, Angelika; Gerland, Sebastian
Abstract
This paper investigates automatic segmentation and classification of C-band, polarimetric synthetic aperture radar (SAR) satellite images of Arctic sea ice under freezing conditions prior to melt. The objective is to investigate the robustness of the results obtained under slightly varying environmental conditions and different viewing geometries. Initially, three geographically overlapping SAR images from consecutive days are incidence-angle corrected and segmented into unknown classes. The segmentation is performed by an unsupervised mixture-of-Gaussian segmentation algorithm utilizing six features extracted from the polarimetric data. After segmentation, the segments are contextually smoothed. One segmented image is manually labelled based on in situ data and expert knowledge. Using this scene as reference, we consider two strategies for class labelling of the other scenes. The first manually labels the classes based on visual inspection of the reference; the second utilizes various statistical distance measures to automatically assign each unknown class to the statistically nearest reference class. These two scenes are also classified pixel-wise by a supervised classification algorithm based on the reference data. Poor classification results are obtained when the incidence angle is very different from the reference scene. Similar viewing geometries reveal good classification and labelling results, the latter regardless of the distance measure used.
Description
Source at https://doi.org/10.3189/2015AoG69A802.
Publisher
Cambridge University Press
Citation
Moen, M.-A.N., Anfinsen, S.N., Doulgeris, A.P., Renner, A.H.H. & Gerland, S. (2015). Assessing polarimetric SAR sea-ice classifications using consecutive day images. Annals of Glaciology, 56(69), 285-294. https://doi.org/10.3189/2015AoG69A802
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1058]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)