ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Two-billion-year-old evaporites capture Earth’s great oxidation

Permanent link
https://hdl.handle.net/10037/14771
DOI
https://doi.org/10.1126/science.aar2687
Thumbnail
View/Open
article.pdf (3.326Mb)
Accepted manuscript version (PDF)
Date
2018-04-20
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Blättler, C.L.; Claire, M.W.; Prave, A.R.; Kirsimäe, K.; Higgins, J.A.; Medvedev, P.V.; Romashkin, A.E; Rychanchik, D.V.; Zerkle, A.L.; Paiste, Kärt; Kreitsmann, T.; Millar, I.L.; Hayles, J.A.; Bao, H.; Turchyn, A.V.; Warke, M.R.; Lepland, Aivo
Abstract
Major changes in atmospheric and ocean chemistry occurred in the Paleoproterozoic era (2.5 to 1.6 billion years ago). Increasing oxidation dramatically changed Earth’s surface, but few quantitative constraints exist on this important transition. This study describes the sedimentology, mineralogy, and geochemistry of a 2-billion-year-old, ~800-meter-thick evaporite succession from the Onega Basin in Russian Karelia. The deposit consists of a basal unit dominated by halite (~100 meters) followed by units dominated by anhydrite-magnesite (~500 meters) and dolomite-magnesite (~200 meters). The evaporite minerals robustly constrain marine sulfate concentrations to at least 10 millimoles per kilogram of water, representing an oxidant reservoir equivalent to more than 20% of the modern ocean-atmosphere oxidizing capacity. These results show that substantial amounts of surface oxidant accumulated during this critical transition in Earth’s oxygenation.
Description
This is the author’s version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science on vol. 360, 20 April 2018, DOI: https://doi.org/10.1126/science.aar2687.
Publisher
American Association for the Advancement of Science
Citation
Blättler, C.L., Claire, M.W., Prave, A.R., Kirsimäe, K., Higgins, J.A., Medvedev, P.V., ... Lepland, A. (2018). Two-billion-year-old evaporites capture Earth’s great oxidation. Science, 360(6386), 320-323. https://doi.org/10.1126/science.aar2687
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (geovitenskap) [812]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)