ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning simulations of quad-polarimetric features from dual-polarimetric measurements over sea ice

Permanent link
https://hdl.handle.net/10037/14787
Thumbnail
View/Open
article.pdf (4.735Mb)
Accepted manuscript version (PDF)
Date
2018-06
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Blix, Katalin; Espeseth, Martine; Eltoft, Torbjørn
Abstract
In this paper, we investigated the capabilities of the Gaussian Process Regression (GPR) algorithm in predicting of two quad-polarimetric parameters (relevant for sea ice analysis) from 6-dimensional dual-polarimetric input vectors. The GRP is trained on few hundred samples selected randomly from an image subset, and tested on the entire image. The performance is assessed by visual comparisons, and by quantifying two regression performance statistical measures. The results of the regression showed big variations from scene to scene, and between the estimated output parameters, but the overall assessment is that the method gave surprisingly good correspondence to the real quad-polarimetric parameters.
Description
Source at https://www.vde-verlag.de/proceedings-en/454636136.html.
Publisher
VDE VERLAG GMBH
Citation
Blix, K., Espeseth, M. & Eltoft, T. (2018). Machine Learning simulations of quad-polarimetric features from dual-polarimetric measurements over sea ice. EUSAR 2018 - 12th European Conference on Synthetic Aperture Radar, Electronic proceedings, 661-665.
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)