ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluation of feature ranking and regression methods for oceanic chlorophyll-a estimation

Permanent link
https://hdl.handle.net/10037/15028
DOI
https://doi.org/10.1109/JSTARS.2018.2810704
Thumbnail
View/Open
article.pdf (2.566Mb)
Accepted manuscript version (PDF)
Date
2018-03-22
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Blix, Katalin; Eltoft, Torbjørn
Abstract
This paper evaluates two alternative regression techniques for oceanic chlorophyll-a (Chl-a) content estimation. One of the investigated methodologies is the recently introduced Gaussian process regression (GPR) model. We explore two feature ranking methods derived for the GPR model, namely sensitivity analysis (SA) and automatic relevance determination (ARD). We also investigate a second regression method, the partial least squares regression (PLSR) for oceanic Chl-a content estimation. Feature relevance in the PLSR model can be accessed through the variable importance in projection (VIP) feature ranking algorithm. This paper thus analyzes three feature ranking models, SA, ARD, and VIP, which are all derived from different fundamental principles, and uses the ranked features as inputs to the GPR and PLSR to assess regression strengths. We compare the regression performances using some common performance measures, and show how the feature ranking methods can be used to find the lowest number of features to estimate oceanic Chl-a content by using the GPR and PLSR models, while still producing comparable performance to the state-of-the-art algorithms. We evaluate the models on a global MEdium Resolution Imaging Spectrometer matchup dataset. Our results show that the GPR model has the best regression performance for most of the input feature sets we used, and our conclusion is this model can favorably be used for Chl-a content retrieval, already with two features, ranked by either the SA or ARD methods.
Description
Accepted manuscript version. Published version available at https://doi.org/10.1109/JSTARS.2018.2810704.
Is part of
Blix, K. (2019). Machine Learning Water Quality Monitoring. (Doctoral thesis). https://hdl.handle.net/10037/16502.
Publisher
Institute of Electrical and Electronics Engineers
Citation
Blix, K. & Eltoft, T. (2018). Evaluation of feature ranking and regression methods for oceanic chlorophyll-a estimation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(5), 1403-1418. https://doi.org/10.1109/JSTARS.2018.2810704
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1058]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)