Multi-modal chip-based fluorescence and quantitative phase microscopy for studying inflammation in macrophages
Permanent lenke
https://hdl.handle.net/10037/15089Dato
2018-07-24Type
Journal articleTidsskriftartikkel
Peer reviewed
Forfatter
Dubey, Vishesh; Ahmad, Azeem; Singh, Rajwinder; Wolfson, Deanna; Basnet, Purusotam; Acharya, Ganesh; Mehta, Dalip Singh; Ahluwalia, Balpreet SinghSammendrag
Total internal reflection fluorescence (TIRF) microscopy benefits from high-sensitivity, low background noise, low photo-toxicity and high-contrast imaging of sub-cellular structures close to the membrane surface. Although, TIRF microscopy provides high-contrast imaging it does not provide quantitative information about morphological features of the biological cells. Here, we propose an integrated waveguide chip-based TIRF microscopy and label-free quantitative phase imaging (QPI). The evanescent field present on top of a waveguide surface is used to excite the fluorescence and an upright microscope is used to collect the signal. The upright microscope is converted into a Linnik-type interferometer to sequentially extract both the quantitative phase information and TIRF images of the cells. Waveguide chip-based TIRF microscopy benefits from decoupling of illumination and collection light path, large field of view imaging and pre-aligned configuration for multi-color TIRF imaging. The proposed multi-modal microscopy is used to study inflammation caused by lipopolysaccharide (LPS) on rat macrophages. The TIRF microscopy showed that LPS inflammatory molecule disrupts the cell membrane and causes cells to significantly expand across a substrate. While, QPI module quantified changes in the sub-cellular content of the LPS challenged macrophages, showing a net decrease in its maximum phase values.
Beskrivelse
Source at https://doi.org/10.1364/OE.26.019864. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.