ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Model-Based Polarimetric Decomposition With Higher Order Statistics

Permanent link
https://hdl.handle.net/10037/15219
DOI
https://doi.org/10.1109/LGRS.2018.2889682
Thumbnail
View/Open
article.pdf (1.012Mb)
Accepted manuscript version (PDF)
Date
2019-01-11
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Eltoft, Torbjørn; Doulgeris, Anthony Paul
Abstract
This letter presents a new general framework for solving polarimetric target decompositions that extends them to use more statistical information and include radar texture models. Polarimetric target decomposition methods generally have more physical parameters than equations and are, thus, underdetermined and have no unique solution. The common approach to solve them is to make certain assumptions, thus fixing some parameters, allowing the other parameters to be solved freely. This letter explains how to obtain additional equations from several statistical moments to find unique solutions and to address the issue of textured product models. The current work extends our previous conference works [1]-[3]. Preliminary results are demonstrated for a well-known real polarimetric synthetic aperture radar scene for the three-component Freeman-Durden decomposition.
Description
Source at https://doi.org/10.1109/LGRS.2018.2889682.
Publisher
IEEE
Citation
Eltoft, T. & Doulgeris, A.P. (2019). Model-Based Polarimetric Decomposition With Higher Order Statistics. IEEE Geoscience and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2018.2889682
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1058]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)