ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gaussian Markov random field priors in ionospheric 3D multi-instrument tomography

Permanent link
https://hdl.handle.net/10037/15387
DOI
https://doi.org/10.1109/TGRS.2018.2847026
Thumbnail
View/Open
article.pdf (12.84Mb)
Publisher's version (PDF)
Date
2018-08-22
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Norberg, J.; Vierinen, Juha; Roininen, L; Orispää, M.; Kauristie, K; Rideout, W.; Coster, A. J.; Lehtinen, M
Abstract
In ionospheric tomography, the atmospheric electron density is reconstructed from different electron density related measurements, most often from ground-based measurements of satellite signals. Typically, ionospheric tomography suffers from two major complications. First, the information provided by measurements is insufficient and additional information is required to obtain a unique solution. Second, with necessary spatial and temporal resolutions, the problem becomes very high dimensional, and hence, computationally infeasible. With Bayesian framework, the required additional information can be given with prior probability distributions. The approach then provides physically quantifiable probabilistic interpretation for all model variables. Here, Gaussian Markov random fields (GMRFs) are used for constructing the prior electron density distribution. The use of GMRF introduces sparsity to the linear system, making the problem computationally feasible. The method is demonstrated over Fennoscandia with measurements from global navigation satellite system (GNSS) and low Earth orbit (LEO) satellite receiver networks, GNSS occultation receivers, LEO satellite Langmuir probes, and ionosonde and incoherent scatter radar measurements.
Description
Source at https://doi.org/10.1109/TGRS.2018.2847026.
Publisher
IEEE
Citation
Norberg, J., Vierinen, J., Roininen, L., Orispää, M., Kauristie, K., Rideout, W.C., Coster, A.J. & Lehtinen M. (2018). Gaussian Markov random field priors in ionospheric 3D multi-instrument tomography. IEEE Transactions on Geoscience and Remote Sensing, 56(12), 7009-7021. https://doi.org/10.1109/TGRS.2018.2847026
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)