ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Time Series Kernel Similarities for Predicting Paroxysmal Atrial Fibrillation from ECGs

Permanent link
https://hdl.handle.net/10037/16443
Thumbnail
View/Open
article.pdf (641.9Kb)
Accepted manuscript version (PDF)
Date
2018
Type
Journal article
Tidsskriftartikkel

Author
Bianchi, Filippo Maria; Livi, Lorenzo; Ferrante, Alberto; Milosevic, Jelena; Miroslaw, Malek
Abstract
We tackle the problem of classifying Electrocardiography (ECG) signals with the aim of predicting the onset of Paroxysmal Atrial Fibrillation (PAF). Atrial fibrillation is the most common type of arrhythmia, but in many cases PAF episodes are asymptomatic. Therefore, in order to help diagnosing PAF, it is important to design procedures for detecting and, more importantly, predicting PAF episodes. We propose a method for predicting PAF events whose first step consists of a feature extraction procedure that represents each ECG as a multi-variate time series. Successively, we design a classification framework based on kernel similarities for multi-variate time series, capable of handling missing data. We consider different approaches to perform classification in the original space of the multivariate time series and in an embedding space, defined by the kernel similarity measure. We achieve a classification accuracy comparable with state of the art methods, with the additional advantage of detecting the PAF onset up to 15 minutes in advance.
Description
Source at https://doi.org/10.1109/IJCNN.2018.8489716.
Citation
Bianchi, F.M., Livi, L., Ferrante, A., Milosevic, J. & Malek, M. (2018). Time Series Kernel Similarities for Predicting Paroxysmal Atrial Fibrillation from ECGs. Proceedings of the 2018 International Joint Conference on Neural Networks. https://doi.org/10.1109/IJCNN.2018.8489716
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1058]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)